DeLiGAN - This project is an implementation of the Generative Adversarial Network

Overview

DeLiGAN

alt text

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data. Via this project, we make two contributions:

  1. We propose a simple but effective modification of the GAN framework for settings where training data is diverse yet small in size.
  2. We propose a modification of inception-score proposed by Salimans et al. Our modified inception-score provides a single, unified measure of inter-class and intra-class variety in samples generated by a GAN.

Dependencies

The code for DeLiGAN is provided in Tensorflow 0.10 for the MNIST and Toy dataset, and in Theano 0.8.2 + Lasagne 0.2 for the CIFAR-10 and Sketches dataset. This code was tested on a Ubuntu 14.04 workstation hosting a NVIDIA Titan X GPU.

Datasets

This repository includes implementations for 4 different datasets.

  1. Toy (self generated unimodal and bimodal gaussians)
  2. MNIST (http://www.cs.toronto.edu/~gdahl/mnist.npz.gz)
  3. CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html)
  4. Sketches (http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/)

The models for evaluating DeLiGAN on these datasets can be found in our repo. The details for how to download and lay out the datasets can be found in src/datasets/README.md

Usage

Training DeLiGAN models

To run any of the models

  • First download the datasets and store them in the respective sub-folder of the datasets folder (src/datasets/)
  • To run the model on any of the datasets, go to the respective src folders and run the dg_'dataset'.py file in the respective dataset folders with two arguments namely, --data_dir and --results_dir. For example, starting from the top-level folder,
cd src/sketches 
python dg_sketches.py --data_dir ../datasets/sketches/ --results_dir ../results/sketches
  • Note that the results_dir needs to have 'train' as a sub-folder.

Modified inception score

For example, to obtain the modified inception scores on CIFAR

  • Download the inception-v3 model (http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.) and store it in src/modified_inception_scores/cifar10/
  • Generate samples using the model trained in the dg_cifar.py and copy it to src/modified_inception_scores/cifar10/
  • Run transfer_cifar10_softmax_b1.py to transfer learn the last layer.
  • Perform the modifications detailed in the comments in transfer_cifar10_softmax_b1.py and re-run it to evaluate the inception scores.
  • The provided code can be modified slightly to work for sketches as well by following the comments provided in transfer_cifar10_softmax_b1.py

Parts of the code in this implementation have been borrowed from the Improved-GAN implementation by OpenAI (T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pages 2226–2234, 2016.)

Cite

@inproceedings{DeLiGAN17,
  author = {Gurumurthy, Swaminathan and Sarvadevabhatla, Ravi Kiran and R. Venkatesh Babu},
  title = {DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data},
  booktitle = {Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition},
  location = {Honolulu, Hawaii, USA}
 }

Q&A

Please send message to [email protected] if you have any query regarding the code.

Owner
Video Analytics Lab -- IISc
Developing intelligent systems for semantic understanding of image/video content.
Video Analytics Lab -- IISc
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Matthew Colbrook 1 Apr 08, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022