Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Overview

Pytorch Code for VideoLT

[Website][Paper]

Updates

  • [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [09/28/2021] Features uploaded to Aliyun Drive(deprecated), for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [08/23/2021] Checkpoint links uploaded, sorry we are handling campus network bandwidth limitation, dataset will be released in this weeek.
  • [08/15/2021] Code released. Dataset download links and checkpoints links will be updated in a week.
  • [07/29/2021] Dataset released, visit https://videolt.github.io/ for downloading.
  • [07/23/2021] VideoLT is accepted by ICCV2021.

concept

Overview

VideoLT is a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. We provide VideoLT dataset and long-tailed baselines in this repo including:

Data Preparation

Please visit https://videolt.github.io/ to obtain download links. We provide raw videos and extracted features.

For using extracted features, please modify dataset/dutils.py and set the correct path to features.

Model Zoo

The baseline scripts and checkpoints are provided in MODELZOO.md.

FrameStack

FrameStack is simple yet effective approach for long-tailed video recognition which re-samples training data at the frame level and adopts a dynamic sampling strategy based on knowledge learned by the network. The rationale behind FrameStack is to dynamically sample more frames from videos in tail classes and use fewer frames for those from head classes.

framestack

Usage

Requirement

pip install -r requirements.txt

Prepare Data Path

  1. Modify FEATURE_NAME, PATH_TO_FEATURE and FEATURE_DIM in dataset/dutils.py.

  2. Set ROOT in dataset/dutils.py to labels folder. The directory structure is:

    labels
    |-- count-labels-train.lst
    |-- test.lst
    |-- test_videofolder.txt
    |-- train.lst
    |-- train_videofolder.txt
    |-- val_videofolder.txt
    `-- validate.lst

Train

We provide scripts for training. Please refer to MODELZOO.md.

Example training scripts:

FEATURE_NAME='ResNet101'

export CUDA_VISIBLE_DEVICES='2'
python base_main.py  \
     --augment "mixup" \
     --feature_name $FEATURE_NAME \
     --lr 0.0001 \
     --gd 20 --lr_steps 30 60 --epochs 100 \
     --batch-size 128 -j 16 \
     --eval-freq 5 \
     --print-freq 20 \
     --root_log=$FEATURE_NAME-log \
     --root_model=$FEATURE_NAME'-checkpoints' \
     --store_name=$FEATURE_NAME'_bs128_lr0.0001_lateavg_mixup' \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Note: Set args.resample, args.augment and args.loss_func can apply multiple long-tailed stratigies.

Options:

    args.resample: ['None', 'CBS','SRS']
    args.augment : ['None', 'mixup', 'FrameStack']
    args.loss_func: ['BCELoss', 'LDAM', 'EQL', 'CBLoss', 'FocalLoss']

Test

We provide scripts for testing in scripts. Modify CKPT to saved checkpoints.

Example testing scripts:

FEATURE_NAME='ResNet101'
CKPT='VideoLT_checkpoints/ResNet-101/ResNet101_bs128_lr0.0001_lateavg_mixup/ckpt.best.pth.tar'

export CUDA_VISIBLE_DEVICES='1'
python base_test.py \
     --resume $CKPT \
     --feature_name $FEATURE_NAME \
     --batch-size 128 -j 16 \
     --print-freq 20 \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Citing

If you find VideoLT helpful for your research, please consider citing:

@misc{zhang2021videolt,
title={VideoLT: Large-scale Long-tailed Video Recognition}, 
author={Xing Zhang and Zuxuan Wu and Zejia Weng and Huazhu Fu and Jingjing Chen and Yu-Gang Jiang and Larry Davis},
year={2021},
eprint={2105.02668},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Owner
Skye
Soul Programmer & Science Enthusiast
Skye
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021