Open-source implementation of Google Vizier for hyper parameters tuning

Overview

Advisor

Introduction

Advisor is the hyper parameters tuning system for black box optimization.

It is the open-source implementation of Google Vizier with these features.

  • Easy to use with API, SDK, WEB and CLI
  • Support abstractions of Study and Trial
  • Included search and early stop algorithms
  • Recommend parameters with trained model
  • Same programming interfaces as Google Vizier
  • Command-line tool just like Microsoft NNI.

Supported Algorithms

  • Grid Search
  • Random Search
  • Bayesian Optimization
  • TPE(Hyperopt)
  • Random Search(Hyperopt)
  • Simulate Anneal(Hyperopt)
  • Quasi Random(Chocolate)
  • Grid Search(Chocolate)
  • Random Search(Chocolate)
  • Bayes(Chocolate)
  • CMAES(Chocolate)
  • MOCMAES(Chocolate)
  • SMAC Algorithm
  • Bayesian Optimization(Skopt)
  • Early Stop First Trial Algorithm
  • Early Stop Descending Algorithm
  • Performance Curve Stop Algorithm

Quick Start

It is easy to setup advisor service in local machine.

pip install advisor

advisor_admin server start

Then go to http://127.0.0.1:8000 in the browser and submit tuning jobs.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

advisor run -f ./advisor_client/examples/python_function/config.json

advisor study describe -s demo

Advisor Server

Run server with official package.

advisor_admin server start

Or run with official docker image.

docker run -d -p 8000:8000 tobegit3hub/advisor

Or run with docker-compose.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/docker-compose.yml

docker-compose up -d

Or run in Kubernetes cluster.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/kubernetes_advisor.yaml

kubectl create -f ./kubernetes_advisor.yaml

Or run from scratch with source code.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

pip install -r ./requirements.txt

./manage.py migrate

./manage.py runserver 0.0.0.0:8000

Advisor Client

Install with pip or use docker container.

pip install advisor

docker run -it --net=host tobegit3hub/advisor bash

Use the command-line tool.

export ADVISOR_ENDPOINT="http://127.0.0.1:8000"

advisor study list

advisor study describe -s "demo"

advisor trial list --study_name "demo"

Use admin tool to start/stop server.

advisor_admin server start

advisor_admin server stop

Use the Python SDK.

client = AdvisorClient()

# Create the study
study_configuration = {
        "goal": "MAXIMIZE",
        "params": [
                {
                        "parameterName": "hidden1",
                        "type": "INTEGER",
                        "minValue": 40,
                        "maxValue": 400,
                        "scalingType": "LINEAR"
                }
        ]
}
study = client.create_study("demo", study_configuration)

# Get suggested trials
trials = client.get_suggestions(study, 3)

# Complete the trial
trial = trials[0]
trial_metrics = 1.0
client.complete_trial(trial, trial_metrics)

Please checkout examples for more usage.

Configuration

Study configuration describe the search space of parameters. It supports four types and here is the example.

{
  "goal": "MAXIMIZE",
  "randomInitTrials": 1,
  "maxTrials": 5,
  "maxParallelTrials": 1,
  "params": [
    {
      "parameterName": "hidden1",
      "type": "INTEGER",
      "minValue": 1,
      "maxValue": 10,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "learning_rate",
      "type": "DOUBLE",
      "minValue": 0.01,
      "maxValue": 0.5,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "hidden2",
      "type": "DISCRETE",
      "feasiblePoints": "8, 16, 32, 64",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "optimizer",
      "type": "CATEGORICAL",
      "feasiblePoints": "sgd, adagrad, adam, ftrl",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "batch_normalization",
      "type": "CATEGORICAL",
      "feasiblePoints": "true, false",
      "scalingType": "LINEAR"
    }
  ]
}

Here is the configuration file in JSON format for advisor run.

{
  "name": "demo",
  "algorithm": "BayesianOptimization",
  "trialNumber": 10,
  "concurrency": 1,
  "path": "./advisor_client/examples/python_function/",
  "command": "./min_function.py",
  "search_space": {
      "goal": "MINIMIZE",
      "randomInitTrials": 3,
      "params": [
          {
              "parameterName": "x",
              "type": "DOUBLE",
              "minValue": -10.0,
              "maxValue": 10.0,
              "scalingType": "LINEAR"
          }
      ]
  }
}

Or use the equivalent configuration file in YAML format.

name: "demo"
algorithm: "BayesianOptimization"
trialNumber: 10
path: "./advisor_client/examples/python_function/"
command: "./min_function.py"
search_space:
  goal: "MINIMIZE"
  randomInitTrials: 3
  params:
    - parameterName: "x"
      type: "DOUBLE"
      minValue: -10.0
      maxValue: 10.0

Screenshots

List all the studies and create/delete the studies easily.

study_list.png

List the detail of study and all the related trials.

study_detail.png

List all the trials and create/delete the trials easily.

trial_list.png

List the detail of trial and all the related metrics.

trial_detail.png

Development

You can edit the source code and test without re-deploying the server and client.

git clone [email protected]:tobegit3hub/advisor.git

cd ./advisor/advisor_client/

python ./setup.py develop

export PYTHONPATH="/Library/Python/2.7/site-packages/:$PYTHONPATH"
Owner
tobe
Work in @Xiaomi, @UnitedStack and @4Paradigm for Storage(HBase), IaaS(OpenStack, Kubernetes), Big data(Spark, Flink) and Machine Learning(TensorFlow).
tobe
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022