A Self-Supervised Contrastive Learning Framework for Aspect Detection

Overview

AspDecSSCL

A Self-Supervised Contrastive Learning Framework for Aspect Detection

image image image image image image

This repository is a pytorch implementation for the following AAAI'21 paper:

A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection

Tian Shi, Liuqing Li, Ping Wang, Chandan K. Reddy

Video Presentation

Requirements

  • Python 3.6.9
  • argparse=1.1
  • torch=1.4.0
  • sklearn=0.22.2.post1
  • numpy=1.18.2
  • gensim=3.8.3

Dataset

You can download processed dataset from here. Place them along side with AapDecSSCL.

|--- AspDecSSCL
|--- Data
|    |--- bags_and_cases
|    |--- restaurant
|    |    |--- dev.txt
|    |    |--- test.txt
|    |    |--- train.txt
|    |    |--- train_w2v.txt
|--- cluster_results (results, automatically build)
|--- nats_results (results, automatically build)
|

Train your model from scratch

Prepare word and aspect embeddings.

Train word2vec: python3 run.py --task word2vec

Run Kmeans: python3 run.py --task kmeans

Check Kmeans Keywords python3 run.py --task kmeans-keywords

Self-supervised Learning (Teacher Model)

SSCL Training python3 run.py --task sscl-train

Before validation, you need to perform aspect mapping. There is a file aspect_mapping.txt in nats_results. For general, please change nomap to none. Other aspects should use their names. Please check test.txt to validate the names.

SSCL validation python3 run.py --task sscl-validate

SSCL testing python3 run.py --task sscl-test

SSCL evaluate python3 run.py --task sscl-evaluate

SSCL teacher python3 run.py --task sscl-teacher

SSCL clean results python3 run.py --task sscl-clean

Student Model

SSCLS training python3 run.py --task student-train

SSCLS validation python3 run.py --task student-validate

SSCLS testing python3 run.py --task student-test

SSCLS testing python3 run.py --task student-evaluate

SSCLS clean python3 run.py --task student-clean

Citation

@article{shi2020simple,
  title={A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection},
  author={Shi, Tian and Li, Liuqing and Wang, Ping and Reddy, Chandan K},
  journal={arXiv preprint arXiv:2009.09107},
  year={2020}
}
Owner
Tian Shi
NLP and machine learning for news and online reviews.
Tian Shi
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022