The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Overview

ISC-Track1-Submission

The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Required dependencies

To begin with, you should install the following packages with the specified versions in Python, Anaconda. Other versions may work but please do NOT try. For instance, cuda 11.0 has some bugs which bring very bad results. The hardware chosen is Nvidia Tesla V100 and Intel CPU. Other hardware, such as A100, may work but please do NOT try. The stability is not guaranteed, for instance, the Ampere architecture is not suitable and some instability is observed. Please do NOT use AMD CPU, such as EPYC, we observe some instability on DGX server.

  • python 3.7.10
  • pytorch 1.7.1 with cuda 10.1
  • faiss-gpu 1.7.1 with cuda 10.1
  • h5py 3.4.0
  • pandas 1.3.3
  • sklearn 1.0
  • skimage 0.18.3
  • PIL 8.3.2
  • cv2 4.5.3.56
  • numpy 1.16.0
  • torchvision 0.8.2 with cuda 10.1
  • augly 0.1.4
  • selectivesearch 0.4
  • face-recognition 1.3.0 (with dlib of gpu-version)
  • tqdm 4.62.3
  • requests 2.26.0
  • seaborn 0.11.2
  • mkl 2.4.0
  • loguru 0.5.3

Note: Some unimportant packages may be missing, please install them using pip directly when an error occurs.

Pre-trained models

We use three pre-trained models. They are all pre-trained on ImageNet unsupervisedly. To be convenient, we first directly give the pre-trained models as follows, then also the training codes are given.

The first backbone: ResNet-50; The second backbone: ResNet-152; The third backbone: ResNet-50-IBN.

For ResNet-50, we do not pre-train it by ourselves. It is directly downloaded from here. It is supplied by Facebook Research, and the project is Barlow Twins. You should rename it to resnet50_bar.pth.

For ResNet-152 and ResNet-50-IBN, we use the official codes of Momentum2-teacher. We only change the backbone to ResNet-152 and ResNet-50-IBN. It takes about 2 weeks to pre-train the ResNet-152, and 1 week to pre-train the ResNet-50-IBN on 8 V100 GPUs. To be convenient, we supply the whole pre-training codes in the Pretrain folder. The related readme file is also given in that folder.

It should be noted that pre-training processing plays a very important role in our algorithm. Therefore, if you want to reproduce the pre-trained results, please do NOT change the number of GPUs, the batch size, and other related hyper-parameters.

Training

For training, we generate 11 datasets. For each dataset, 3 models with different backbones are trained. Each training takes about/less than 1 day on 4 V100 GPUs (bigger backbone takes longer and smaller backbone takes shorter). The whole training codes, including how to generate training datasets and the link to the generated datasets, are given in the Training folder. For more details, please refer to the readme file in that folder.

Test

To test the performance of the trained model, we perform multi-scale, multi-model, and multi-part testing and ensemble all the scores to get the final score. To be efficient, 33 V100 GPUs are suggested to use. The time for extracting all query images' features using 33 V100 GPUs is about 3 hours. Also extracting and storing training and reference images' features take a lot of time. Please be patient and prepare enough storage to reproduce the testing process. We give all the information to generate our final results in the Test folder. Please reproduce the results according to the readme file in that folder.

Owner
Wenhao Wang
I am a student from Beihang University. My research interests include person re-identification, unsupervised domain adaptation, and domain generalization.
Wenhao Wang
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022