Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

Overview

MidiBERT-Piano


MIT License ARXIV LICENSE STAR ISSUE

Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen

Introduction

This is the official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

With this repository, you can

  • pre-train a MidiBERT-Piano with your customized pre-trained dataset
  • fine-tune & evaluate on 4 downstream tasks
  • compare its performance with a Bi-LSTM

All the datasets employed in this work are publicly available.

Quick Start

If you'd like to reproduce the results (MidiBERT) shown in the paper, image-20210710185007453

  1. please download the checkpoints, and rename files like the following
MidiBERT/{CP/remi}/
result
└── finetune
	└── melody_default
		└── model_best.ckpt
	└── velocity_default
		└── model_best.ckpt
	└── composer_default
		└── model_best.ckpt
	└── emotion_default
		└── model_best.ckpt
  1. please refer to evaluation,

and you are free to go! (btw, no gpu is needed for evaluation)

Installation

  • Python3
  • Install generally used packages for MidiBERT-Piano:
git clone https://github.com/wazenmai/MIDI-BERT.git
cd MIDI-BERT
pip install -r requirements.txt

A. Prepare Data

All data in CP/REMI token are stored in data/CP & data/remi, respectively, including the train, valid, test split.

You can also preprocess as below.

1. download dataset and preprocess

  • Pop1K7
  • ASAP
    • Step 1: Download ASAP dataset from the link
    • Step 2: Use Dataset/ASAP_song.pkl to extract songs to Dataset/ASAP
  • POP909
    • preprocess to have 865 pieces in qualified 4/4 time signature
    • exploratory.py to get pieces qualified in 4/4 time signature and save at qual_pieces.pkl
    • preprocess.py to realign and preprocess
    • Special thanks to Shih-Lun (Sean) Wu
  • Pianist8
    • Step 1: Download Pianist8 dataset from the link
    • Step 2: Use Dataset/pianist8_(mode).pkl to extracts songs to Dataset/pianist8/mode
  • EMOPIA
    • Step 1: Download Emopia dataset from the link
    • Step 2: Use Dataset/emopia_(mode).pkl to extracts songs to Dataset/emopia/mode

2. prepare dict

dict/make_dict.py customize the events & words you'd like to add.

In this paper, we only use Bar, Position, Pitch, Duration. And we provide our dictionaries in CP & REMI representation.

dict/CP.pkl

dict/remi.pkl

3. prepare CP & REMI

./prepare_data/CP

  • Run python3 main.py . Please specify the dataset and whether you wanna prepare an answer array for the task (i.e. melody extraction, velocity prediction, composer classification and emotion classification).
  • For example, python3 main.py --dataset=pop909 --task=melody --dir=[DIR_TO_STORE_DATA]

./prepare_data/remi/

  • The same logic applies to preparing REMI data.

Acknowledgement: CP repo, remi repo

You may encode these midi files in different representations, the data split is in ***.

B. Pre-train a MidiBERT-Piano

./MidiBERT/CP and ./MidiBERT/remi

  • pre-train a MidiBERT-Piano
python3 main.py --name=default

A folder named CP_result/pretrain/default/ will be created, with checkpoint & log inside.

  • customize your own pre-training dataset Feel free to select given dataset and add your own dataset. To do this, add --dataset, and specify the respective path in load_data() function. For example,
# to pre-train a model with only 2 datasets
python3 main.py --name=default --dataset pop1k7 asap	

Acknowledgement: HuggingFace

Special thanks to Chin-Jui Chang

C. Fine-tune & Evaluate on Downstream Tasks

./MidiBERT/CP and ./MidiBERT/remi

1. fine-tuning

  • finetune.py
python3 finetune.py --task=melody --name=default

A folder named CP_result/finetune/{name}/ will be created, with checkpoint & log inside.

2. evaluation

  • eval.py
python3 eval.py --task=melody --cpu --ckpt=[ckpt_path]

Test loss & accuracy will be printed, and a figure of confusion matrix will be saved.

The same logic applies to REMI representation.

D. Baseline Model (Bi-LSTM)

./baseline/CP & ./baseline/remi

We seperate our baseline model to note-level tasks, which used a Bi-LSTM, and sequence-level tasks, which used a Bi-LSTM + Self-attention model.

For evaluation, in note-level task, please specify the checkpoint name. In sequence-level task, please specify only the output name you set when you trained.

  • Train a Bi-LSTM

    • note-level task
     python3 main.py --task=melody --name=0710
    • sequence-level task
     python3 main.py --task=composer --output=0710
  • Evaluate

    • note-level task:
     python3 eval.py --task=melody --ckpt=result/melody-LSTM/0710/LSTM-melody-classification.pth
    • sequence-level task
     python3 eval.py --task='composer' --ckpt=0710

The same logic applies to REMI representation.

Special thanks to Ching-Yu (Sunny) Chiu

E. Skyline

Get the accuracy on pop909 using skyline algorithm

python3 cal_acc.py

Since Pop909 contains melody, bridge, accompaniment, yet skyline cannot distinguish between melody and bridge.

There are 2 ways to report its accuracy:

  1. Consider Bridge as Accompaniment, attains 78.54% accuracy
  2. Consider Bridge as Melody, attains 79.51%

Special thanks to Wen-Yi Hsiao for providing the code for skyline algorithm.

Citation

If you find this useful, please cite our paper.

@article{midibertpiano,
  title={{MidiBERT-Piano}: Large-scale Pre-training for Symbolic Music Understanding},
  author={Yi-Hui Chou and I-Chun Chen and Chin-Jui Chang and Joann Ching, and Yi-Hsuan Yang},
  journal={arXiv preprint arXiv:2107.05223},
  year={2021}
}
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022