This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

Related tags

Deep LearningTANS
Overview

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning. Accepted to NeurIPS 2021 (Spotlight).

@inproceedings{jeong2021task,
    title     = {Task-Adaptive Neural Network Search with Meta-Contrastive Learning},
    author    = {Jeong, Wonyong and Lee, Hayeon and Park, Geon and Hyung, Eunyoung and Baek, Jinheon and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

Most conventional Neural Architecture Search (NAS) approaches are limited in that they only generate architectures without searching for the optimal parameters. While some NAS methods handle this issue by utilizing a supernet trained on a large-scale dataset such as ImageNet, they may be suboptimal if the target tasks are highly dissimilar from the dataset the supernet is trained on. To address such limitations, we introduce a novel problem of Neural Network Search (NNS), whose goal is to search for the optimal pretrained network for a novel dataset and constraints (e.g. number of parameters), from a model zoo. Then, we propose a novel framework to tackle the problem, namely Task-Adaptive Neural Network Search (TANS). Given a model-zoo that consists of network pretrained on diverse datasets, we use a novel amortized meta-learning framework to learn a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a high-performing network on it, and minimize the similarity between irrelevant dataset-network pairs. We validate the effectiveness and efficiency of our method on ten real-world datasets, against existing NAS/AutoML baselines. The results show that our method instantly retrieves networks that outperform models obtained with the baselines with significantly fewer training steps to reach the target performance, thus minimizing the total cost of obtaining a task-optimal network.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Environmental Setup

Please install packages thorugh requirements.txt after creating your own environment with python 3.8.x.

$ conda create --name ENV_NAME python=3.8
$ conda activate ENV_NAME
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install --upgrade pip
$ pip install -r requirements.txt

Preparation

We provide our model-zoo consisting of 14K pretrained models on various Kaggle datasets. We also share the full raw datasets collected from Kaggle as well as their processed versions of datasets for meta-training and meta-test in our learning framework. Except for the raw datasets, all the processed files are required to perform the cross model retrieval learning and meta-testing on unseen datasets. Please download following files before training or testing. (Due to the heavy file size, some files will be updated by Oct. 28th. Sorry for the inconvenience).

No. File Name Description Extension Size Download
1 p_mod_zoo Processed 14K Model-Zoo pt 91.9Mb Link
2 ofa_nets Pretrained OFA Supernets zip - Pending
3 raw_m_train Raw Meta-Training Datasets zip - Pending
4 raw_m_test Raw Meta-Test Datasets zip - Pending
5 p_m_train Processed Meta-Training Files pt 69Mb Link
6 p_m_test Processed Meta-Test Files zip 11.6Gb Link

After download, specify their location on following arguments:

  • data-path: 5 and 6 should be placed. 6 must be unzipped.
  • model-zoo: path where 1 should be located. Please give full path to the file. i.e. path/to/p_mod_zoo.pt
  • model-zoo-raw: path where 2 should be placed and unzipped (required for meta-test experiments)

Learning the Cross Modal Retrieval Space

Please use following command to learn the cross modal space. Keep in mind that correct model-zoo and data-path are required. Forbase-path, this path is for storing training outcomes, such as resutls, logs, the cross modal embeddings, etc.

$ python3 main.py --gpu $1 \
                  --mode train \
                  --batch-size 140 \
                  --n-epochs 10000 \
                  --base-path path/for/storing/outcomes/\
                  --data-path path/to/processed/dataset/is/stored/\
                  --model-zoo path/to/model_zoo.pt\
                  --seed 777 

You can also simply run a script file after updating the paths.

$ cd scripts
$ sh train.sh GPU_NO

Meta-Test Experiment

You can use following command for testing the cross-modal retrieval performance on unseen meta-test datasets. In this experiment, load-path which is the base-path of the cross modal space that you previously built and model-zoo-raw which is path for the OFA supernets pretrained on meta-training datasets are required.

$ python3 ../main.py --gpu $1 \
                     --mode test \
                     --n-retrievals 10\
                     --n-eps-finetuning 50\
                     --batch-size 32\
                     --load-path path/to/outcomes/stored/\
                     --data-path path/to/processed/dataset/is/stored/\
                     --model-zoo path/to/model_zoo.pt\
                     --model-zoo-raw path/to/pretrained/ofa/models/\
                     --base-path path/for/storing/outcomes/\
                     --seed 777

You can also simply run a script file after updating the paths.

$ cd scripts
$ sh test.sh GPU_NO
Owner
Wonyong Jeong
Ph.D. Candidate @ KAIST AI
Wonyong Jeong
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022