Text Generation by Learning from Demonstrations

Overview

Text Generation by Learning from Demonstrations

The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?).

Paper

arXiv

Prerequisites

Per fairseq usage, we need to install this particular modifed version fairseq. The simplest way: pip install --editable ./.

Due to pytorch changes, and given that we're using a slightly older version of fairseq (see below), please use pytorch version <= 1.6.0. However, the GOLD algorithm can be easily implemented on top of the latest fairseq (or most text generation codebases).

Datasets

For downloading CNN/DM and XSum datasets, we follow the instructions here; note that this link does not correspond to the latest fairseq. Our version of the CNN/DM input articles include the prepended "(CNN)" tags. For downloading IWSLT14 De-En dataset, we follow the instructions here. The binary files are provided in our repo, in the directory data-bin. For downloading the particular version of our NQG dataset, we follow the instructions here. The binary files are provided upon request.

Code: experiments on transformer models using fairseq

For reproducibility, the code is based on a April 2020 version of fairseq (based on release v0.9.0). However, it is easy to reimplement the GOLD algorithm in the latest version of fairseq and in another frameworks.

How to implement in the latest version of fairseq?

  • If your GPUs "have large memory", then most of the implementation happens around the criterion code (for question generation, summarization, translation, the py file is ./fairseq/criterions/label_smoothed_cross_entropy.py in the April 2020 version of fairseq). Note that the implementation in this repo uses this approach.
    • "Have large memory": Meaning the GPUs can store pi, pi-tilde, p_MLE at the same time; see Algorithm 1 in the paper. In our experiments (using the same datasets, same batch size, etc.), this would imply that the GPUs have ~24G of memory.
  • If your GPUs cannot fit the above models, then you may need to input p_MLE probabilities as features. This can be done by first saving the probabilities into a text file or pickle file, and then loading them in the load_langpair_dataset function of ./fairseq/tasks/translation.py (or other corresponding files for other tasks).

How to implement in other codebase?

  • See Algorithm 1 in the paper. The majority of the work will happen around the loss computation. We need to have three different models ready when computing losses: (1) pi, the network we're training; (2) pi-tilde, a slightly older version of pi (created to ensure training stability, similar to the periodic synchronization in deep Q-learning; (3) p_MLE, to compute rewards (but this can be pre-loaded in the form of input features, in case the GPU cannot fit the third model).

BART summarization generation fairseq issue

Given that there has been minor bugs with the fairseq BART summarization code (details on original fairseq github), we make the corresponding changes according to the fairseq authors' recommendation. (1) In ./fairseq/sequence_generator.py, see the modification here. (2) In ./fairseq/tasks/fairseq_task.py, see the modification here. (3) In ./fairseq/models/bart/hub_interface.py, see the modification here. The above is already implemented in this repo. But if we're reimplementing the GOLD code in the latest fairseq, we need to beware of this issue (and keep the three modifications in mind).

How to run?

Training

The entry point for training is ./fairseq_cli/train.py. See ./fairseq/options.py for possible flags. For CNN/DM, the script for running GOLD-p is provided in run_cnndm_goldp.sh; the script for running GOLD-s (which often performs better than GOLD-p) is provided in run_cnndm_golds.sh. Some other scripts for other tasks are also provided. For explanations of flags, please refer to ./fairseq/options.py as well as Algorithm 1 in the paper.

Validation

Note that to validate, one possibility is to find the checkpoint that corresponds to highest BLEU/ROUGE-2 score on dev set. We cannot validate according to NLL loss, given that in the paper, we showed that our models achieve higher accuracy but higher perplexity (and NLL loss). Do not use checkpoint_best.pt. IWSLT14 De-En validation is implemented. For summarization, please use run_cnndm_validation.py (similar to run_cnndm_inference.py) as an example to loop through all checkpoints. Then, compute the ROUGE based on run_cnndm_validation_step2.sh (perhaps with small modifications).

Evaluation/inference

For BART evaluation, we use the inference scripts provided in run_cnndm_inference.sh, run_xsum_inference.sh, run_squad_inference.sh. For IWSLT14 De-En inference, the following few lines will do.

python -W ignore [path-to-fairseq_cli/generate.py] data-bin/iwslt14.tokenized.de-en \
    --path [path-to-model-checkpoint.pt] \
    --batch-size 128 --beam 5 --remove-bpe --gen-subset test  > [path-to-save-to-file]

Transformer models

Please ensure the data is processed appropriately before using the models.

MLE model checkpoints

GOLD-s model checkpoints

Not a lot of hyperparameter search was done for the transformer models, so it is likely that more search (on hyperparameters, on architecture) could reach better performance.

Moreover, for summarization models, we use pyrouge+files2rouge to evaluate, based on the fairseq instructions after pyrouge+files2rouge installation. The package files2rouge has a common WordNet-2.0.exc.db error; see this link for the fix.

Citation, authors, and contact

The bibtex entry

Richard Yuanzhe Pang

He He

A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022