Text Generation by Learning from Demonstrations

Overview

Text Generation by Learning from Demonstrations

The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?).

Paper

arXiv

Prerequisites

Per fairseq usage, we need to install this particular modifed version fairseq. The simplest way: pip install --editable ./.

Due to pytorch changes, and given that we're using a slightly older version of fairseq (see below), please use pytorch version <= 1.6.0. However, the GOLD algorithm can be easily implemented on top of the latest fairseq (or most text generation codebases).

Datasets

For downloading CNN/DM and XSum datasets, we follow the instructions here; note that this link does not correspond to the latest fairseq. Our version of the CNN/DM input articles include the prepended "(CNN)" tags. For downloading IWSLT14 De-En dataset, we follow the instructions here. The binary files are provided in our repo, in the directory data-bin. For downloading the particular version of our NQG dataset, we follow the instructions here. The binary files are provided upon request.

Code: experiments on transformer models using fairseq

For reproducibility, the code is based on a April 2020 version of fairseq (based on release v0.9.0). However, it is easy to reimplement the GOLD algorithm in the latest version of fairseq and in another frameworks.

How to implement in the latest version of fairseq?

  • If your GPUs "have large memory", then most of the implementation happens around the criterion code (for question generation, summarization, translation, the py file is ./fairseq/criterions/label_smoothed_cross_entropy.py in the April 2020 version of fairseq). Note that the implementation in this repo uses this approach.
    • "Have large memory": Meaning the GPUs can store pi, pi-tilde, p_MLE at the same time; see Algorithm 1 in the paper. In our experiments (using the same datasets, same batch size, etc.), this would imply that the GPUs have ~24G of memory.
  • If your GPUs cannot fit the above models, then you may need to input p_MLE probabilities as features. This can be done by first saving the probabilities into a text file or pickle file, and then loading them in the load_langpair_dataset function of ./fairseq/tasks/translation.py (or other corresponding files for other tasks).

How to implement in other codebase?

  • See Algorithm 1 in the paper. The majority of the work will happen around the loss computation. We need to have three different models ready when computing losses: (1) pi, the network we're training; (2) pi-tilde, a slightly older version of pi (created to ensure training stability, similar to the periodic synchronization in deep Q-learning; (3) p_MLE, to compute rewards (but this can be pre-loaded in the form of input features, in case the GPU cannot fit the third model).

BART summarization generation fairseq issue

Given that there has been minor bugs with the fairseq BART summarization code (details on original fairseq github), we make the corresponding changes according to the fairseq authors' recommendation. (1) In ./fairseq/sequence_generator.py, see the modification here. (2) In ./fairseq/tasks/fairseq_task.py, see the modification here. (3) In ./fairseq/models/bart/hub_interface.py, see the modification here. The above is already implemented in this repo. But if we're reimplementing the GOLD code in the latest fairseq, we need to beware of this issue (and keep the three modifications in mind).

How to run?

Training

The entry point for training is ./fairseq_cli/train.py. See ./fairseq/options.py for possible flags. For CNN/DM, the script for running GOLD-p is provided in run_cnndm_goldp.sh; the script for running GOLD-s (which often performs better than GOLD-p) is provided in run_cnndm_golds.sh. Some other scripts for other tasks are also provided. For explanations of flags, please refer to ./fairseq/options.py as well as Algorithm 1 in the paper.

Validation

Note that to validate, one possibility is to find the checkpoint that corresponds to highest BLEU/ROUGE-2 score on dev set. We cannot validate according to NLL loss, given that in the paper, we showed that our models achieve higher accuracy but higher perplexity (and NLL loss). Do not use checkpoint_best.pt. IWSLT14 De-En validation is implemented. For summarization, please use run_cnndm_validation.py (similar to run_cnndm_inference.py) as an example to loop through all checkpoints. Then, compute the ROUGE based on run_cnndm_validation_step2.sh (perhaps with small modifications).

Evaluation/inference

For BART evaluation, we use the inference scripts provided in run_cnndm_inference.sh, run_xsum_inference.sh, run_squad_inference.sh. For IWSLT14 De-En inference, the following few lines will do.

python -W ignore [path-to-fairseq_cli/generate.py] data-bin/iwslt14.tokenized.de-en \
    --path [path-to-model-checkpoint.pt] \
    --batch-size 128 --beam 5 --remove-bpe --gen-subset test  > [path-to-save-to-file]

Transformer models

Please ensure the data is processed appropriately before using the models.

MLE model checkpoints

GOLD-s model checkpoints

Not a lot of hyperparameter search was done for the transformer models, so it is likely that more search (on hyperparameters, on architecture) could reach better performance.

Moreover, for summarization models, we use pyrouge+files2rouge to evaluate, based on the fairseq instructions after pyrouge+files2rouge installation. The package files2rouge has a common WordNet-2.0.exc.db error; see this link for the fix.

Citation, authors, and contact

The bibtex entry

Richard Yuanzhe Pang

He He

Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022