Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Overview

Convolutional Neural Network to detect deforestation in the Amazon Rainforest

This project is part of my final work as an Aerospace Engineering student, and it comprises the development of a convolutional neural network (CNN) capable of classifying SAR images of deforestation in the Amazon Rainforest. The database used to train the CNN was created using the imagery avaiable in the European Space Agency (ESA) portal Copernicus.

Choosing the target area

The target area was the region inside the municipality of São Félix do Xingu, in the state of Pará, Brazil, and the sensing was made in July 5th, 2021. This city is particularly suitable for this project since it is the number one in cumulative forest degradation up to 2020, according to the National Institute of Space Research (INPE). Around 24% of São Félix's territory (more than 83 thousands square kilometers, that is more than the territory of Austria) has already been deforested.

Collecting de dataset

Synthetic Aperture Array (SAR) imaging is a method of remote sensing that operates beyond the visible light spectrum, using microwaves to form the image. The radiation in this wavelength is less susceptible to atmospheric interference than in the optical range. This is particularly fitting for monitoring the Amazon Rainforest, a region considerably umid and prone to cloud formation in a great part of the year. The downside is that, alternatively, a SAR image is less intuitive to be interpreted by a human eye than an optical image.

In order to remove the aspect of a televison tuned to a dead channel, it is necessary to pre-process the colleceted images. More details on this process will be avaiable in a near future (when my work will be published by the library of Universidade de Brasília). For the time being, it suffices to say that the original image turned into 27 new image as the one that follows:

Everyone of these new images were sliced in small chunks, resulting in about 1800 samples that comprised the dataset to be used to train the neural network that has yet to be developed.

Labelling the samples

As the above picture can demonstrate, the resulting faux-colors of the pre-processing step highlight the contrast between the areas where the forest is preserved and those where there are deforestation hotspots. Using high-resolution optical images of the same region as a complementary guide, every sample was manually labeled as one of these four categories:

  • totally preserved, when there is no trace of deforestation;
  • partially preserved, when there is some trace of deforestation, but the preserved prevail;
  • partially deforested, when the deforested area is the prevailing feature;
  • totally deforested, when there is no trace of preserved area.

Later in the CNN trainin step it will be clearer that this categorization were not optimal, to say the least.

Developing de convolutional neural network

CNN is a deep neural network specifically developed to be applied in the recognition of visual pattern. This architecture is made by two kinds of hidden layers:

  • a convolutional layer (as the name goes), that pass a small window (the filter) through the input image, making a convolutional operation (dot product) between the filter and every chunck of pixels comprised in the perception window;
  • a pooling layer, that gets as an input the output of the convolutional layer and makes a dimensional reduction operation, normally a mean operation with a given number (2x2, 3x3, depending on the desired reduction) of inputs.

These operations are well suited in finding patterns in a picture with a good amount of generalization in order to prevent overfitting. The CNN developed for this work can be seen in the following picture:

Training, testing and results

Using four labels to pre-classify the dataset used to train de CNN ended up to be a bad idea. CNN architecture is good to find commom patterns in a set of pictures, as long as these patterns are well generalized. Trying to differentiate between 'partially preserved' and 'partially deforested' proved to be unfruitful, with a low accuracy (75%) in small epochs and an increasing overfitting with more epochs.

Thus, a merge between these two labels was made, with considerably better results. Bearing this in mind, this new merged label was once again merged with the label 'totally deforested', creating a binary scenario ('preserved', 'not preserved') with even better results (accuracy of about 90%). These results are shown in the following graphics:

You might also like...
Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer vision can be used to identify cognates known to exist, and perhaps lead linguists to evidence of unknown cognates.

Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

Releases(v1.0.0)
  • v1.0.0(Feb 6, 2022)

    What's Changed

    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/1
    • Add files via upload by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/2
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/3
    • Update README.md by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/4
    • Update readme by @diogosens in https://github.com/diogosens/cnn_sar_image_classification/pull/5

    New Contributors

    • @diogosens made their first contribution in https://github.com/diogosens/cnn_sar_image_classification/pull/1

    Full Changelog: https://github.com/diogosens/cnn_sar_image_classification/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022