当前位置:网站首页>matlab neural network ANN classification
matlab neural network ANN classification
2022-08-09 22:07:00 【student_domi】
1、内容简介
略
500-可以交流、咨询、答疑
2、内容说明
clear
clc
close all
%% import and deal data
filename = "DAY 1-DAY28 AVERAGE DATA SETS----A.B.C -split by 28 × 6 classification.xlsx";
datatrain = xlsread(filename, "Sheet1");
datatest = xlsread(filename, "Sheet2");
datavalidation = xlsread(filename, "Sheet3");
Xtrain = datatrain(:,1:4)';
% Xtrain(2,:) = 100*Xtrain(2,:);
Ytrain = datatrain(:,5)';
[~,nber] = size(Xtrain);
order = randperm(nber);
XTrain1 = Xtrain(:,order);
YTrain1 = Ytrain(:,order);
XValidation = datavalidation(:,1:4)';
% XValidation(2,:) = 100*XValidation(2,:);
YValidation = datavalidation(:,5)';
[~,nber] = size(XValidation);
order = randperm(nber);
XValidation1 = XValidation(:,order);
YValidation1 = YValidation(:,order);
Xtest = datatest(:,1:4)';
% Xtest(2,:) = 100*Xtest(2,:);
Ytest = datatest(:,5)';
[~,nber] = size(Xtest);
order = randperm(nber);
Xtest1 = Xtest(:,order);
Ytest1 = Ytest(:,order);
XTrain = [XTrain1 XValidation1 Xtest1];
YTrain = [YTrain1 YValidation1 Ytest1];
% [p1,minp,maxp,t1,mint,maxt]=premnmx(XTrain,YTrain);
% load net.mat
% accuary(net, XTrain, YTrain, minp, maxp, mint,maxt)
% accuary(net, XValidation, YValidation, minp, maxp, mint,maxt)
% accuary(net, Xtest, Ytest, minp, maxp, mint,maxt)
%% 训练
%数据做归一化
% [p1,minp,maxp,t1,mint,maxt]=premnmx(XTrain,output');
[p1,minp,maxp,t1,mint,maxt]=premnmx(XTrain,YTrain);
%创建网络
% logsig:对数S形转移函数,单极性;tansig: 双极性S形转移函数;purelin:线性函数
% traingdx :梯度下降自适应学习率训练函数,traingdm,trainlm, trainscg These are learning algorithms for weights
% traingdm是带动量的梯度下降法,trainlm是指L-M优化算法,trainscgRefers to the quantized conjugate gradient method
% 网络结构:三个隐含层、And the number of neurons is 5、12的前向BP网络,1个output
% net=newff(minmax(p1),[6, 15, 1],{'tansig', 'tansig','purelin'},'trainlm');
net=newff(minmax(p1),[12, 24, 32, 24, 1],{'tansig', 'tansig', 'tansig', 'tansig', 'purelin'},'trainlm');
% net=newff(minmax(p1),[5, 12, 3],{'tansig', 'tansig','purelin'},'trainlm');
%设置训练次数
net.trainParam.epochs = 600;
%设置收敛误差
net.trainParam.goal=0.0001;
%设置学习率
net.trainParam.lr = 0.03 ;
%Set the momentum factor,Avoid local optima and overfitting
net.trainParam.mc=0.9;
%Minimum number of confirmation failures
net.trainParam.max_fail=30;
%训练网络
[net,tr]=train(net,p1,t1);
%%
fuse_matrix_train = accuary(net, XTrain, YTrain, minp, maxp, mint,maxt);
fuse_matrix_Validation = accuary(net, XValidation, YValidation, minp, maxp, mint,maxt);
fuse_matrix_test = accuary(net, Xtest, Ytest, minp, maxp, mint,maxt);
%%
figure
imagesc(fuse_matrix_train)
set(gca,'xtick',1:3)
set(gca,'xticklabel',{'1 ','2','3'},'XTickLabelRotation',45)
set(gca,'ytick',1:3)
set(gca,'yticklabel',{'1 ','2','3'})
set(gca,'FontSize',14,'Fontname', 'Times New Roman');
colorbar
title ("train data")
xlabel('truth')
ylabel("predict")
[m,n] = size(fuse_matrix_train);
for i = 1:m
for j = 1:n
x = i;
y = j;
text(x,y,num2str(fuse_matrix_train(i,j)))
end
end
%
figure
imagesc(fuse_matrix_Validation)
set(gca,'xtick',1:3)
set(gca,'xticklabel',{'1 ','2','3'},'XTickLabelRotation',45)
set(gca,'ytick',1:3)
set(gca,'yticklabel',{'1 ','2','3'})
set(gca,'FontSize',14,'Fontname', 'Times New Roman');
colorbar
title ("Validation data")
xlabel('truth')
ylabel("predict")
[m,n] = size(fuse_matrix_Validation);
for i = 1:m
for j = 1:n
x = i;
y = j;
text(x,y,num2str(fuse_matrix_Validation(i,j)))
end
end
%
figure
imagesc(fuse_matrix_test)
set(gca,'xtick',1:3)
set(gca,'xticklabel',{'1 ','2','3'},'XTickLabelRotation',45)
set(gca,'ytick',1:3)
set(gca,'yticklabel',{'1 ','2','3'})
set(gca,'FontSize',14,'Fontname', 'Times New Roman');
colorbar
title ("test data")
xlabel('truth')
ylabel("predict")
[m,n] = size(fuse_matrix_test);
for i = 1:m
for j = 1:n
x = i;
y = j;
text(x,y,num2str(fuse_matrix_test(i,j)))
end
end
3、仿真分析
4、参考论文
略
边栏推荐
- 中英文说明书丨Abbkine细胞迁移分析试剂盒
- What are the benefits of enterprise data integration?How do different industries solve the problem of data access?
- IS31FL3737B general 12 x 12 LED drive 40 QFN I2C 42 ma
- 真香|持一建证书央企可破格录取
- SqlServer 2016 安装相关问题
- CMake 安装升级更高版本
- How to deal with keys when Redis is large?
- 华为云创新中心助力启泰智能 补齐中小模具企业数字化能力短板
- win10配置CenterNet环境
- 漏洞复现-redis未授权getshell
猜你喜欢
『百日百题 · 基础篇』备战面试,坚持刷题 第五话——循环语句(2)!
Prometheus Operator 自定义监控添加redis explorer
Cholesterol-PEG-Thiol,CLS-PEG-SH,胆固醇-聚乙二醇-巯基用于改善溶解度
Win11找不到Internet Explore怎么办
How are data integration APIs key to enterprise digital transformation?
小满nestjs(第三章 前置知识装饰器)
matlab 神经网络 ANN 分类
ebook download | "Business executives' IT strategy guide - why enterprises should implement DevOps"
IS31FL3737B 通用12×12 LED驱动器 I2C 42mA 40QFN
获取数组最后一项别再用array.length-1了
随机推荐
DSPE-PEG-Azide,DSPE-PEG-N3,磷脂-聚乙二醇-叠氮可和DBCO直接反应
Acrel5000web能耗系统在某学院的应用-Susie 周
时序攻击
Overview of Security Analysis Technology for Smart Home Devices
小满nestjs(第五章 nestjs cli)
2.2 监督学习-1
小满nestjs(第四章 前置知识装饰器-实现一个GET请求)
Redis 大的情况下,key 要如何处理?
【深度学习】pix2pix GAN理论及代码实现
Js查找字符串中出现最多次数的字母和单词
倍福CX5120实现温度控制例程详细解析
【kali-权限提升】(4.2.6)社会工程学工具包(中):中间人攻击工具Ettercap
移动端,PC端,微信等常用平台和浏览器判断
听音识情绪 | 程序员手把手教你搭建神经网络,更快get女朋友情绪,求生欲max!
DP-Differential Privacy概念介绍
laravel报错:TokenMismatchException in VerifyCsrfToken.php line 68:
hdu 2094 产生冠军(STL map || 拓扑 || STL set)
Openharmony轻量系统实验--GPIO点灯
没有 accept,我可以建立 TCP 连接吗?
解决执行Command报错executable file not found in $PATH