当前位置:网站首页>量化交易策略介绍及应用市值中性化选股
量化交易策略介绍及应用市值中性化选股
2022-08-10 02:01:00 【黑马程序员官方】
目录
一、股票量化策略介绍
股票量化交易策略最基本有两种形式,趋势交易(技术分析)和市场中性(基本面分析),经常使用的方法为多因子选股和趋势追踪
注:不管是趋势追踪策略还是多因子选股策略,都是为了获取一定的超额收益。趋势追踪策略通过各种交易时机手段获取,而股票的多因子选股策略则是通过选股获得
收益到底从何而来?什么影响股票的收益?
二、Alpha和Beta
每个投资策略的收益率可以分解成为两部分:
- 一部分与市场完全相关,整个市场的平均收益率乘以一个贝塔系数。贝塔可以称为这个投资组合的系统风险
- 另一部分和整个市场无关的叫做阿尔法(Alpha)
1、Alpha很难得,Beta很容易。
2、Alpha就是精选个股,跑赢市场。
3、Beta就是有市场行情时跟上,有风险时候躲避
三、多因子策略与理论介绍
1、什么是多因子选股策略
多因子选股策略是一种应用十分广泛的选股策略,其基本思想就是找到某些和收益率最相关的因子。
2、 多因子(Alpha因子)的种类
- 按照因子分析的角度
- 1、基本面因子
- 价值因子
- 盈利因子
- 成长因子
- 资本结构因子
- 运营因子
- 流通性因子
- 2、技术因子
- 动量因子
- 趋势因子
- 市值因子
- 波动因子
- 成交量因子
- 按照因子来源的角度
- 公司层面
- 价值因子
- 成长因子
- 规模因子
- 等
- 市场层面
- 趋势因子
- 动量因子
- 市值因子
- 外部环境层面
- 宏观环境
- 行业环境
大类因子细分
多因子策略的优势
- 多元因子,阿尔法收益的来源丰富,多因子持续稳定
- 根据市场环境的变化选取最优因子和权重,模型可修改
多因子策略的理论来源?(重要)什么影响股票的收益率?
3、 资产定价模型(CAPM)
- ri:证券的收益率
- rF:无风险利率
- rM:市场收益率
- rM-rF: 风险溢价
- β: 某个公司与市场的相关性
这个模型可以理解为单因子模型-系统风险,我们的收益只跟市场走。
4、套利定价理论(APT模型)
假设证券收益率与一组未知因子(特征)线性相关
APT模型其实就是相当于一个多因子模型,证券收益通过权重系数回归得到。但是并没有指出其中具体的因子(特征)是什么
5、 FF三因子模型
Fama和French 1992年对美国股票市场决定不同股票回报率差异的因素的研究发现(发现市值较小、市值账面比较低的两类公司更有可能取得优于市场水平的平均回报率),超额回报率可由它对三个因子来解释。市场资产组合、市值因子(SMB)、账面市值比因子(HML)。
三因子模型指出了规模因子、价值因子。
发现市值较小、市值账面比较低的两类公司更有可能取得优于市场水平的平均回报率
意味着那些市值较小的公司组成的投资组合,可以预期能带来更高的回报,与更高的风险。所以在2017年之前一段时间之内,大多数量化公司在市值小的指标进行筛选就能获取很高的回报
在过去20年里面,很多学者对三因子模型进行实证分析,发现有些股票的alpha显著不为0,这说明三因子模型中的三个风险(因素)并不能解释所有超额收益。
6、 FF五因子模型
Fama和French发现在上述风险之外,还有盈利水平风险、投资水平风险也能带来个股的超额收益,并于2015年提出了五因子模型
其实五因子模型就是增加了盈利因子和成长因子这两类因子
与三因子类似,参数估计的方法仍然是用多元线性回归的方法,这里的a_i则是五因子模型里面尚未解释的超额收益。
7、关于挖掘与怎么做
很多数据或者证券公司的研究报告当中,有很多一些新的方法可以去发掘
8、 案例:市值因子(Alpha因子)的选股策略
8.1 结果
8.2 从市值中选择值小的股票
- 选定财务数据筛选
- 进行每日调仓(多因子选股调仓周期频率会小一些)
8.3 代码
def init(context):
context.limit = 20
def before_trading(context):
# 获取财务数据中的市值,然后按照市值大小排序
fund = get_fundamentals(
query(
fundamentals.eod_derivative_indicator.market_cap
).order_by(
fundamentals.eod_derivative_indicator.market_cap.asc()
).limit(
context.limit
)
)
# 将这20支股票的代号
context.stocks = fund.columns
def handle_bar(context, bar_dict):
# 先得出投资组合当中的仓位有没有股票,注意这里的仓位即使为0,但是
# 股票名字还在
holding = []
for stock in context.portfolio.positions.keys():
# 判断当前的股票是否有持有股份
if context.portfolio.positions[stock].quantity > 0:
holding.append(stock)
# 判断哪些要卖出去,哪些要买入
to_sell = set(holding) - set(context.stocks)
to_buy = context.stocks
# 进行买卖判断
for sell in to_sell:
order_target_percent(sell, 0)
# 购买的比例
percent = 1.0 / len(to_buy)
for buy in to_buy:
order_target_percent(buy, percent)
四、多因子策略流程
1、 多因子策略流程
重在因子的探索和处理
我们可以得出以下步骤
- 因子挖掘
- 因子数据的处理
- 去极值
- 标准化
- 中性化
- 单因子的有效性检测
- 因子IC分析
- 因子收益率分析
- 因子的方向
- 多因子相关性和和组合分析
- 因子相关性
- 因子合成
- 因子数据的处理
- 回测
- 多因子选股的权重
- 调仓周期
2、 多因子策略确定的事情
- 1、选择哪些因子和因子的方向确定
- 2、因子的权重(打分法和回归法)
- 3、调仓周期
其中1步骤属于因子的探索和处理部分,2和3步骤属于选好因子回测部分
3、因子挖掘怎么做?
由于此部分不是回测,所以我们需要在单独的研究平台使用特定的接口进行分析。RQ平台提供了这样的研究平台供我们去挖掘因子
4、 关于研究平台的获取函数
在研究因子的时候我们需要获取更多区间段历史的数据来进行研究,所以研究平台当中的函数会跟回测中不一样
关于研究平台文档:https://www.ricequant.com/api/research/chn
4.1get_price - 获取合约历史数据
get_price(order_book_id, start_date='2013-01-04', end_date='2014-01-04', frequency='1d', fields=None, adjust_type='pre', skip_suspended =False, country='cn')
获取指定合约或合约列表的历史数据(包含起止日期,日线或分钟线)。目前仅支持中国市场。在编写策略的时候推荐使用history_bars
参数
参数 | 类型 | 说明 |
---|---|---|
order_book_id | str OR str list | 合约代码,可传入order_book_id, order_book_id list |
start_date | str, datetime.date, datetime.datetime, pandasTimestamp | 开始日期,默认为'2013-01-04'。交易使用时,用户必须指定 |
end_date | str, datetime.date, datetime.datetime, pandasTimestamp | 结束日期,默认为'2014-01-04'。交易使用时,默认为策略当前日期前一天 |
frequency | str | 历史数据的频率。 现在支持日/分钟级别的历史数据,默认为'1d'。使用者可自由选取不同频率,例如'5m'代表5分钟线 |
fields | str OR str list | 返回字段名称 |
adjust_type | str | 前复权处理。前复权 - pre,后复权 - post,不复权 - none,回测使用 - internal需要注意,internal数据与回测所使用数据保持一致,仅就拆分事件对价格以及成交量进行了前复权处理,并未考虑分红派息对于股价的影响。所以在分红前后,价格会出现跳跃。 |
skip_suspended | bool | 是否跳过停牌数据。默认为False,不跳过,用停牌前数据进行补齐。True则为跳过停牌期。注意,当设置为True时,函数order_book_id只支持单个合约传入 |
country | str | 默认是中国市场('cn'),目前仅支持中国市场 |
返回
- 传入一个order_book_id,多个fields,函数会返回pandas DataFrame
- 传入一个order_book_id,一个field,函数会返回pandas Series
- 传入多个order_book_id,一个field,函数会返回pandas DataFrame
- 传入多个order_book_id,函数会返回pandas Panel
案例:
- 获取单一股票历史日线行情(返回pandas DataFrame):
[In]get_price('000001.XSHE', start_date='2015-04-01', end_date='2015-04-12')
[Out]
open close high low total_turnover volume limit_up limit_down
2015-04-01 10.7300 10.8249 10.9470 10.5469 2.608977e+09 236637563.0 11.7542 9.6177
2015-04-02 10.9131 10.7164 10.9470 10.5943 2.222671e+09 202440588.0 11.9102 9.7397
2015-04-03 10.6486 10.7503 10.8114 10.5876 2.262844e+09 206631550.0 11.7881 9.6448
2015-04-07 10.9538 11.4015 11.5032 10.9538 4.898119e+09 426308008.0 11.8288 9.6787
2015-04-08 11.4829 12.1543 12.2628 11.2929 5.784459e+09 485517069.0 12.5409 10.2620
2015-04-09 12.1747 12.2086 12.9208 12.0255 5.794632e+09 456921108.0 13.3684 10.9403
2015-04-10 12.2086 13.4294 13.4294 12.1069 6.339649e+09 480990210.0 13.4294 10.9877
- 获取股票列表历史日线收盘价(返回pandas DataFrame):
[In]get_price(['000024.XSHE', '000001.XSHE', '000002.XSHE'], start_date='2015-04-01', end_date='2015-04-12', fields='close')
[Out]
000024.XSHE 000001.XSHE 000002.XSHE
2015-04-01 32.1251 10.8249 12.7398
2015-04-02 31.6400 10.7164 12.6191
2015-04-03 31.6400 10.7503 12.4891
2015-04-07 31.6400 11.4015 12.7398
2015-04-08 31.6400 12.1543 12.8327``
2015-04-09 31.6400 12.2086 13.5941
2015-04-10 31.6400 13.4294 13.2969
- 获取股票列表历史日线行情(返回pandas DataPanel):
[In]get_price(['000024.XSHE', '000001.XSHE', '000002.XSHE'], start_date='2015-04-01', end_date='2015-04-12')
[Out]
<class 'rqcommons.pandas_patch.HybridDataPanel'>
Dimensions: 8 (items) x 7 (major_axis) x 3 (minor_axis)
Items axis: open to limit_down
Major_axis axis: 2015-04-01 00:00:00 to 2015-04-10 00:00:00
Minor_axis axis: 000024.XSHE to 000002.XSHE
4.2 get_trading_dates - 获取交易日列表
get_trading_dates(start_date, end_date, country='cn')
获取某个国家市场的交易日列表(起止日期加入判断)。目前仅支持中国市场。
参数
参数 | 类型 | 说明 |
---|---|---|
start_date | str, datetime.date, datetime.datetime, pandasTimestamp | 开始日期 |
end_date | str, datetime.date, datetime.datetime, pandasTimestamp | 结束日期 |
country | str | 默认是中国市场('cn'),目前仅支持中国市场 |
返回
datetime.date list - 交易日期列表(除去周末、节假日)
范例
[In]get_trading_dates(start_date='20160505', end_date='20160505')
[Out]
[datetime.date(2016, 5, 5)]
4.3 get_fundamentals - 查询财务数据
get_fundamentals(query, entry_date, interval=None, report_quarter=False)
获取历史财务数据表格。目前支持中国市场超过400个指标,具体请参考 财务数据文档 。目前仅支持中国市场。我们特别为该函数进行了优化,读取内存的操作会极大地提升数据的获取速度。 注意:
- 使用get_fundamentals()查询财务数据时,我们是以所有年报的发布日期(announcement date)为准,因为只有财报发布后才成为市场上公开可以获取的数据。比如某公司第三季度的财报于11月10号发布,那么如果从查询日期为10月5号,也就是早于发布日期,那么返回的只是第二季度的财报数据。
- 如需获取固定报告期的财务数据请使用get_financials()。
参数
参数 | 类型 | 说明 |
---|---|---|
query | SQLAlchemyQueryObject | SQLAlchmey的Query对象。其中可在'query'内填写需要查询的指标,'filter'内填写数据过滤条件。具体可参考 sqlalchemy's query documentation 学习使用更多的方便的查询语句。从数据科学家的观点来看,sqlalchemy的使用比sql更加简单和强大 |
entry_date | str, datetime.date, datetime.datetime, pandasTimestamp | 查询财务数据的基准开始日期 |
interval | str | 查询财务数据的间隔。例如,填写'5y',则代表从entry_date开始(包括entry_date)回溯5年,返回数据时间以年为间隔。'd' - 天,'m' - 月(30天), 'q' - 季(90天),'y' - 年(365天) |
report_quarter | bool | 是否显示报告期,默认为False,不显示。'Q1' - 一季报,'Q2' - 半年报,'Q3' - 三季报,'Q4' - 年报 |
返回
pandas DataPanel - 财务数据查询结果。
范例
fundamentals是一个重要的对象,其中包括了股指指标表(eod_derivative_indicator),财务指标表(financial_indicator),利润表(income_statement),资产负债表(balance_sheet),现金流量表(cash_flow_statement)以及股票列表(stock_code)等内容。结合SQLAlchemy的查找方式,能够满足用户多种查找需求。
- 获取某几只股票2015年1月10日及以前5年的营业收入(revenue)以及营业成本(cost_of_good_sold)
[In]dp = get_fundamentals(query(fundamentals.income_statement.revenue, fundamentals.income_statement.cost_of_goods_sold
).filter(fundamentals.income_statement.stockcode.in_(['002478.XSHE', '000151.XSHE'])), '2015-01-10', '5y')
[In]dp
[Out]
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 2 (minor_axis)
Items axis: revenue to cost_of_goods_sold
Major_axis axis: 2015-01-09 to 2011-01-10
Minor_axis axis: 002478.XSHE to 000151.XSHE
[In]dp['revenue']
[Out]
002478.XSHE 000151.XSHE
2015-01-09 2.937843e+09 1.733703e+09
2014-01-10 2.926316e+09 8.839355e+08
2013-01-10 2.616532e+09 9.488980e+08
2012-01-10 2.681016e+09 6.205934e+08
2011-01-10 2.034147e+09 4.998120e+08
五、因子数据处理-去极值
学习目标
- 目标
- 说明面板数据、序列数据和截面数据的区别
- 知道处理因子数据是对每个因子的截面数据进行处理
- 了解分位数的作用
- 应用分位数去极值实现分位数去极值
- 了解中位数绝对偏差法
- 实现中位数绝对偏差法去极值
- 了解3倍sigma法则
- 实现3倍sigma法去极值
- 比较三种去极值方法优缺点
- 应用
- 无
那么在多因子策略当中,我们分析因子的数据是怎么组成的?因子跟收益率的分析,应该是怎么样的结构提供?
1、 因子Panel结构分析
Pandas当中的面板数据结构是为了存储三维的结构。由截面数据和序列数据组成
1.1 截面数据
横截面数据:在同一时间,不同统计单位相同统计指标组成的数据列
1.2 序列数据
序列数据:在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度
多因子分析使用的是截面数据!!!
2、 什么是因子去极值处理
去极值并不是删除”异常数据”,而是将这些数据”拉回”到正常的值
注:极值可以理解离群值或者异常数据
2.1 三种方法
- 分位数去极值
- 中位数绝对偏差去极值
- 正态分布去极值
之前在接触一些统计指标的时候,知道最大最小值、平均值、方差、标准差等等。那么这里我们使用一种叫分位数的指标来进行去极值
3、分位数去极值
那么什么是分位数去极值?这里我们来介绍几个相关概念
- 1、中位数
- 2、四分位数
- 3、百分位数
3.1 中位数
定义:中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。中位数用Me(Median简写)表示
14、15、16、16、17、18、18、19、19、20、2l、11、22、22、23、24、24、25、26
中位数为:20,如果不存在中间的一个数,那么取中间的两个数平均值
为什么需要中位数这种指标
比如现在有四个人,A年收入12万,B年收入10万,C年收入9万,D年收入10亿。那么我们去求这四个人的平均收入,这样每个人收入都过亿了,明显不准确。所以假设我们来求中位数反应他们的平均收入,先从小到大排列,9,10,12,10亿,这样取中位数,10+12/2 = 11万,这个结果才反应了大家的平均水平。所以有时候很多地区在统计平均薪资的时候,感觉到被平均,是因为平均值结果并不理想。
3.2 四分位数
即把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数
- 第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
- 第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
- 第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
有一个四分位数计算的案例:http://wiki.mbalib.com/wiki/%E5%9B%9B%E5%88%86%E4%BD%8D%E6%95%B0
3.3 百分位数
前面的中位数,四分位数都是一些特例。百分位数即数据所处位置为整体的某个%位数。关于百分位数有两种称呼,quantile和percentile。他们之间的关系如下
0 quantile = 0 percentile
0.25 quantile = 25 percentile
0.5 quantile = 50 percentile
0.75 quantile = 75 percentile
1 quantile = 100 percentile
3.4 分位数去极值
3.4.1 原理
将指定分位数区间以外的极值用分位点的值替换掉
3.4.2 API
- from scipy.stats.mstats import winsorize
- scipy.stats.mstats.winsorize(a, limits=None)
- Returns a Winsorized version of the input array Parameters:
- a : sequence Input array.
- limits : float 数据两端的percentile的值
- Returns a Winsorized version of the input array Parameters:
3.5 案例:对pe_ratio进行去极值
3.5.1 结果现象
3.5.2 分析
- 获取指定某个日期或者区间段的pe_ratio的截面数据(区间段的日期数据需要拼接)
- 分位数去极值
- 去极值结果与去极值前结果比较
3.5.3 代码
# 获取财务必须填写日期
factor = get_fundamentals(query(fundamentals.eod_derivative_indicator.pe_ratio), entry_date="20180103")[:, 0, :]
factor['pe_ratio'][:1000].plot()
# 百分位去极值
# 将2.5%分位数以下的值,替换
# 将97.5%分位数以上的值,替换
factor['pe_ratio1'] = winsorize(factor['pe_ratio'], limits=0.025)
factor['pe_ratio'][:1000].plot()
factor['pe_ratio1'][:1000].plot()
3.6 自实现分位数去极值
# 求出两个分位数的点的值
def quantile(factor,up,down):
"""分位数去极值 """
up_scale = np.percentile(factor, up)
down_scale = np.percentile(factor, down)
factor = np.where(factor > up_scale, up_scale, factor)
factor = np.where(factor < down_scale, down_scale, factor)
return factor
4、中位数绝对偏差去极值
MAD又称为中位数绝对偏差法(Median Absolute Deviation),MAD 是一种先需计算所有因子与中位数之间的距离总和来检测离群值的方法。
4.1 计算方法
- 1、找出因子的中位数 median
- 2、得到每个因子值与中位数的绝对偏差值 |x – median|
- 3、得到绝对偏差值的中位数, MAD,median(|x – median|)
- 4、计算MAD_e = 1.4826*MAD,然后确定参数 n,做出调整
去除极值判断:
注:通常把偏离中位数三倍MAD_e,如果样本满足正态分布,且数据量较大,可以证明以上的数据作为异常值。和均值标准差方法比,中位数和MAD的计算不受极端异常值的影响,结果更加稳健。
4.2 实现中位数绝对偏差法
def mad(factor):
"""3倍中位数去极值
"""
# 求出因子值的中位数
med = np.median(factor)
# 求出因子值与中位数的差值,进行绝对值
mad = np.median(abs(factor - med))
# 定义几倍的中位数上下限
high = med + (3 * 1.4826 * mad)
low = med - (3 * 1.4826 * mad)
# 替换上下限以外的值
factor = np.where(factor > high, high, factor)
factor = np.where(factor < low, low, factor)
return factor
4.3案例:对pe_ratio进行去极值
4.3.1 结果
4.3.2 分析
- 中位数绝对偏差去极值
- 去极值结果与去极值前结果比较
4.3.3 代码
# 进行中位数去极值
factor['pe_ratio2'] = mad(factor['pe_ratio'])
# 显示
factor['pe_ratio'][:500].plot(color='g')
factor['pe_ratio2'][:500].plot(color='r')
5、正态分布去极值
3sigma原则
5.1 3sigma方法实现
# 3sigma原则
def three_sigma(factor):
# 求出因子数据的平均值和标准差
mean = factor.mean()
std = factor.std()
# 左右的数据加减3个标准差
high = mean + (0.01 * std)
low = mean - (0.01 * std)
# 替换极值数据
factor = np.where(factor > high, high, factor)
factor = np.where(factor < low, low, factor)
return factor
5.2 案例:对pe_ratio进行去极值
5.2.1 结果
5.2.2 分析
- 3sigma方法去极值
- 去极值结果与去极值前结果比较
5.2.3 代码
# 进行中位数去极值
factor['pe_ratio3'] = three_sigma(factor['pe_ratio'])
factor['pe_ratio'][:500].plot(color='g')
factor['pe_ratio3'][:500].plot(color='r')
六、因子数据处理-标准化
1、对pe_ratio标准化
from sklearn.preprocessing import StandardScaler
std = StandardScaler()
std.fit_transform(factor['pe_ratio2'])
2、实现标准化
在调用fit_transform之后,数据的类型会变成array数组。不去修改原来的类型,我们可以简单的实现
def stand(factor):
"""自实现标准化
"""
mean = factor.mean()
std = factor.std()
return (factor - mean)/std
调用
factor['pb_ratio'] = stand(factor['pb_ratio'])
七、因子数据处理-市值中性化
1、 为什么需要中性化处理?什么时候用?
市值中性化是为了在因子选股回测的时候(不属于因子挖掘时候使用)防止选到的股票集中在固定的某些股票当中。
怎么理解?
1.1 市值影响
默认大部分因子当中都包含了市值的影响,所以当我们通过一些指标选择股票的时候,每个因子都会提供市值的因素,是的选择的股票比较集中,也就是选股的标准不太好。
比如:市净率会与市值有很高的相关性,这时如果我们使用未进行市值中性化的市净率,选股的结果会比较集中。
2、怎么去除市值影响
我们结合之前的算法或者知识点,那个方法可以去除一个因子对另一个因子的影响?
3、 市场中性化处理-回归法
在每个时间截面上用所有股票的数据做横截面回归方程,x为市值因子,y为要去除市值影响的因子
通过拟合找到x,y的关系公式,预测的时候会出现偏差?这个偏差是什么?
这个偏差即为保留下来的某因子除去市值影响的部分
4、回归法API
- from sklearn.linear_model import LinearRegression
- 把市值设置成特征,市值不进行任何处理
- 将其它因子设置成目标值
5、 案例:去除市净率 与市值之间的联系部分
5.1 分析
- 获取两个因子数据
- 对目标值因子-市净率进行去极值、标准化处理
- 建立市值与市净率回归方程
- 通过回归系数,预测新的因子结果y_predict
- 求出市净率与y_predict的偏差即为新的因子值
5.2 代码
# 1、获取这两个因子数据
q = query(fundamentals.eod_derivative_indicator.pb_ratio,
fundamentals.eod_derivative_indicator.market_cap)
# 获取的是某一天的横截面数据
factor = get_fundamentals(q, entry_date="2018-01-03")[:, 0, :]
# 先对pb_ratio进行去极值标准化处理
factor['pb_ratio'] = mad(factor['pb_ratio'])
factor['pb_ratio'] = stand(factor['pb_ratio'])
# 确定回归的数据
# x:市值
# y : 因子数据
x = factor['market_cap'].reshape(-1, 1)
y = factor['pb_ratio']
# 建立回归方程并预测
lr = LinearRegression()
lr.fit(x, y)
y_predict = lr.predict(x)
# 去除线性的关系,留下误差作为该因子的值
factor['pb_ratio'] = y - y_predict
边栏推荐
猜你喜欢
随机推荐
在蓝图中给组件动态加子Actor组件
Process management and task management
[论文阅读] Diverse Image-to-Image Translation via Disentangled Representations
【内存管理概述 Objective-C语言】
Open3D 泊松盘网格采样
C# winform 单选框
2022.8.8考试摄像师老马(photographer)题解
16. 最接近的三数之和
volatile 关键字(修饰符 volatile 告诉编译器,变量的值可能以程序未明确指定的方式被改变)
Golang nil的妙用
flask增删改查
控制台中查看莫格命令的详细信息
web开发概述
ECCV 2022 Oral | CCPL: 一种通用的关联性保留损失函数实现通用风格迁移
2022 Top Net Cup Quals Reverse Partial writeup
How Microbes Affect Physical Health
Under pressure, there must be cowards
one of the variables needed for gradient computation has been modified by an inplace
2022.8.8考试从记忆中写入(memory)题解
翻译工具-翻译工具下载批量自动一键翻译免费