当前位置:网站首页>Fashion classification case based on keras
Fashion classification case based on keras
2022-04-23 17:53:00 【Stephen_ Tao】
Keras Introduce
Keras It's a use. Python Write an open source neural network library . It can run on TensorFlow,Microsoft Cognitive Toolkit,Theano or PlaidML above .
Introduction to fashion classification dataset

The dataset contains 70000 Gray scale image , Altogether 10 Categories .
Step analysis and code implementation
Reading data sets
from tensorflow.python.keras.datasets import fashion_mnist
class SingleNN(object):
def __init__(self):
(self.train,self.train_label),(self.test,self.test_label) = fashion_mnist.load_data()
self.train = self.train / 255.0
self.test = self.test / 255.0
Training data , The shape of the test data is as follows :
train: (60000, 28, 28)
train_label: (60000,)
test: (10000, 28, 28)
test_label: (10000,)
model building
Model structure : Double layer neural network
- Hidden layer are 128 Neurons , Activate function selection relu
- Full connection layer has 10 Neurons , because fashion_mnist have 10 Categories , Activate function selection softmax
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Flatten,Dense
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
class SingleNN(object):
model = Sequential([
Flatten(input_shape=(28,28)),
Dense(128,activation=tf.nn.relu),
Dense(10,activation=tf.nn.softmax)
])
Compile and define the optimization process
Optimizer selection Adam, The loss function selects the cross entropy loss **( Label data is integer data , It needs to be converted to one-hot code )**
from tensorflow.python.keras.optimizer_v1 import Adam
from tensorflow.python.keras.losses import sparse_categorical_crossentropy
class SingleNN(object):
def compile(self):
SingleNN.model.compile(optimizer=Adam(),
loss=sparse_categorical_crossentropy,
metrics=['accuracy'])
Define training function
epochs Set to 3 Time ,batch_size Set to 32
class SingleNN(object):
def fit(self):
SingleNN.model.fit(self.train,self.train_label,epochs=3,batch_size=32)
return None
Define the evaluation function
Record the loss function value and accuracy of the test set
class SingleNN(object):
def evaluate(self):
test_loss,test_acc = SingleNN.model.evaluate(self.test,self.test_label)
print("test_loss:",test_loss)
print("test_acc:",test_acc)
return None
Open session diagram
with tf.compat.v1.Session() as sess:
cnn = SingleNN()
cnn.compile()
cnn.fit()
cnn.evaluate()
Running results
Train on 60000 samples
Epoch 1/3
60000/60000 [==============================] - 5s 81us/sample - loss: 0.4989 - accuracy: 0.8242
Epoch 2/3
60000/60000 [==============================] - 5s 77us/sample - loss: 0.3749 - accuracy: 0.8635
Epoch 3/3
60000/60000 [==============================] - 5s 78us/sample - loss: 0.3373 - accuracy: 0.8766
test_loss: 0.3732113081932068
test_acc: 0.8629
版权声明
本文为[Stephen_ Tao]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204230548468731.html
边栏推荐
- 41. The first missing positive number
- Leak detection and vacancy filling (VII)
- Cloud native Virtualization: building edge computing instances based on kubevirt
- 圆环回原点问题-字节跳动高频题
- 2022江西光伏展,中國分布式光伏展會,南昌太陽能利用展
- SQL optimization for advanced learning of MySQL [insert, primary key, sort, group, page, count]
- Submit local warehouse and synchronize code cloud warehouse
- Summary of common SQL statements
- Compilation principle first set follow set select set prediction analysis table to judge whether the symbol string conforms to the grammar definition (with source code!!!)
- Welcome to the markdown editor
猜你喜欢

关于gcc输出typeid完整名的方法

Chrome浏览器的跨域设置----包含新老版本两种设置

470. 用 Rand7() 实现 Rand10()

92. 反转链表 II-字节跳动高频题

Go file operation

2022 Shanghai safety officer C certificate operation certificate examination question bank and simulation examination

440. The k-th small number of dictionary order (difficult) - dictionary tree - number node - byte skipping high-frequency question

MySQL_01_简单数据检索

01 - get to know the advantages of sketch sketch

JVM class loading mechanism
随机推荐
SystemVerilog (VI) - variable
Double pointer advanced -- leetcode title -- container with the most water
Ring back to origin problem - byte jumping high frequency problem
QT modification UI does not take effect
587. Install fence / Sword finger offer II 014 Anagrams in strings
2022 Jiangxi energy storage technology exhibition, China Battery exhibition, power battery exhibition and fuel cell Exhibition
Detailed deployment of flask project
Some questions some questions some questions some questions
Client example analysis of easymodbustcp
Welcome to the markdown editor
MySQL进阶之索引【分类,性能分析,使用,设计原则】
958. 二叉树的完全性检验
Hcip fifth experiment
The method of changing a value in the array and a value in the object of wechat applet
JS interview question: FN call. call. call. Call (FN2) parsing
剑指 Offer 03. 数组中重复的数字
2022 judgment questions and answers for operation of refrigeration and air conditioning equipment
JS implementation private attribute
圆环回原点问题-字节跳动高频题
239. 滑动窗口最大值(困难)-单向队列、大顶堆-字节跳动高频题