cisip-FIRe - Fast Image Retrieval

Overview

cisip-FIRe - Fast Image Retrieval

Documentation Status

Documentation: https://fast-image-retrieval.readthedocs.io/en/latest/

Introduction

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This framework implements most of the major binary hashing methods, together with different popular backbone networks and public datasets.

Major features

  • One for All

    Herein, we unified (i) various binary hashing methods, (ii) different backbone, and (iii) multiple datasets under a single framework to ease the research and benchmarking in this domain. It supports popular binary hashing methods, e.g. HashNet, GreedyHash, DPN, OrthoHash, etc.

  • Modularity

    We break the framework into parts so that one can easily implement their own method by joining up the components.

License

This project is released under BSD 3-Clause License.

Changelog

Please refer to Changelog for more detail.

Implemented method/backbone/datasets

Backbone

  1. Alexnet
  2. VGG{16}
  3. ResNet{18,34,50,101,152}

Loss (Method)

Supervised

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
ADSH adsh.yaml adsh 0.645
BiHalf bihalf-supervised.yaml bihalf-supervised 0.684
Cross Entropy ce.yaml ce 0.434
CSQ csq.yaml csq 0.686
DFH dfh.yaml dfh 0.689
DPN dpn.yaml dpn 0.692
DPSH dpsh.yaml dpsh 0.599
DTSH dtsh.yaml dtsh 0.608
GreedyHash greedyhash.yaml greedyhash 0.667
HashNet hashnet.yml hashnet 0.588
JMLH jmlh.yaml jmlh 0.664
OrthoCos(OrthoHash) orthocos.yaml orthocos 0.701
OrthoArc(OrthoHash) orthoarc.yaml orthoarc 0.698
SDH-C sdhc.yaml sdhc 0.639

Unsupervised

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
BiHalf bihalf.yaml bihalf 0.403
CIBHash cibhash.yaml cibhash 0.322
GreedyHash greedyhash-unsupervised.yaml greedyhash-unsupervised 0.407
SSDH ssdh.yaml ssdh 0.146
TBH tbh.yaml tbh 0.324

Shallow (Non-Deep learning methods)

Method Config Template Loss Name 64bit ImageNet AlexNet ([email protected])
ITQ itq.yaml itq 0.402
LsH lsh.yaml lsh 0.206
PCAHash pca.yaml pca 0.405
SH sh.yaml sh 0.350
Shallow methods only works with descriptor datasets. We will upload the descriptor datasets and 

Datasets

Dataset Name in framework
ImageNet100 imagenet100
NUS-WIDE nuswide
MS-COCO coco
MIRFLICKR/Flickr25k mirflickr
Stanford Online Product sop
Cars dataset cars
CIFAR10 cifar10

Installation

Please head up to Get Started Docs for guides on setup conda environment and installation.

Tutorials

Please head up to Tutorials Docs for guidance.

Reference

If you find this framework useful in your research, please consider cite this project.

@inproceedings{dpn2020,
  title={Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes.},
  author={Fan, Lixin and Ng, Kam Woh and Ju, Ce and Zhang, Tianyu and Chan, Chee Seng},
  booktitle={IJCAI},
  pages={825--831},
  year={2020}
}

@inproceedings{orthohash2021,
  title={One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective},
  author={Hoe, Jiun Tian and Ng, Kam Woh and Zhang, Tianyu and Chan, Chee Seng and Song, Yi-Zhe and Xiang, Tao},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Contributing

We welcome the contributions to improve this project. Please file your suggestions/issues by creating new issues or send us a pull request for your new changes/improvement/features/fixes.

Owner
CISiP Lab
Center of Image and Signal Processing (CISiP) Lab
CISiP Lab
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022