An investigation project for SISR.

Overview

SISR-Survey

An investigation project for SISR.

This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learning-based Single-Image Super-Resolution".

Purpose

Due to the pages and time limitation, it is impossible to introduce all SISR methods in the paper, and it is impossible to update the latest methods in time. Therefore, we use this project to assist our survey to cover more methods. This will be a continuously updated project! We hope it can help more researchers and promote the development of image super-resolution. Welcome more researchers to jointly maintain this project!

Abstract

Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their targets, such as reconstruction efficiency, reconstruction accuracy, and perceptual accuracy. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field.

Taxonomy

Datasets

Benchmarks datasets for single-image super-resolution (SISR).

SINGLE-IMAGE SUPER-RESOLUTION

Reconstruction Efficiency Methods

Perceptual Quality Methods

Perceptual Quality Methods

Further Improvement Methods

DOMAIN-SPECIFIC APPLICATIONS

Real-World SISR

Remote Sensing Image Super-Resolution

Hyperspectral Image Super-Resolution

In contrast to human eyes that can only be exposed to visible light, hyperspectral imaging is a technique for collecting and processing information across the entire range of electromagnetic spectrum. The hyperspectral system is often compromised due to the limitations of the amount of the incident energy, hence there is a trade-off between the spatial and spectral resolution. Therefore, hyperspectral image super-resolution is studied to solve this problem.

[1] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

[2] Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network

[3] Hyperspectral Image Super-Resolution with Optimized RGB Guidance

[4] Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery

[5] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

Light Field Image Super-Resolution

Light field (LF) camera is a camera that can capture information about the light field emanating from a scene and can provide multiple views of a scene. Recently, the LF image is becoming more and more important since it can be used for post-capture refocusing, depth sensing, and de-occlusion. However, LF cameras are faced with a trade-off between spatial and angular resolution. In order to solve this issue, SR technology is introduced to achieve a good balance between spatial and angular resolution.

[1] Light-field Image Super-Resolution Using Convolutional Neural Network

[2] LFNet: A novel Bidirectional Recurrent Convolutional Neural Network for Light-field Image Super-Resolution

[3] Spatial-Angular Interaction for Light Field Image Super-Resolution

[4] Light Field Image Super-Resolution Using Deformable Convolution

Face Image Super-Resolution

Face image super-resolution is the most famous field in which apply SR technology to domain-specific images. Due to the potential applications in facial recognition systems such as security and surveillance, face image super-resolution has become an active area of research.

[1] Learning Face Hallucination in the Wild

[2] Deep Cascaded Bi-Network for Face Hallucination

[3] Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

[4] Super-Identity Convolutional Neural Network for Face Hallucination

[5] Exemplar Guided Face Image Super-Resolution without Facial Landmarks

[6] Robust Facial Image Super-Resolution by Kernel Locality-Constrained Coupled-Layer Regression

Medical Image Super-Resolution

Medical imaging methods such as computational tomography (CT) and magnetic resonance imaging (MRI) are essential to clinical diagnoses and surgery planning. Hence, high-resolution medical images are desirable to provide necessary visual information of the human body. Recently, many methods have been proposed for medical image super-resolution

[1] Efficient and Accurate MRI Super-Resolution Using A Generative Adversarial Network and 3D Multi-Level Densely Connected Network

[2] CT-Image of Rock Samples Super Resolution Using 3D Convolutional Neural Network

[3] Channel Splitting Network for Single MR Image Super-Resolution

[4] SAINT: Spatially Aware Interpolation Network for Medical Slice Synthesis

Depth Map Super-Resolution

The depth map is an image or image channel that contains information relating to the distance of the surfaces of scene objects from a viewpoint. The use of depth information of a scene is essential in many applications such as autonomous navigation, 3D reconstruction, human-computer interaction, and virtual reality. However, depth sensors, such as Microsoft Kinect and Lidar, can only provide depth maps of limited resolutions. Hence, depth map super-resolution has drawn more and more attention recently.

[1] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

[2] Atgv-net: Accurate Depth Super-Resolution

[3] Depth Map Super-Resolution by Deep Multi-Scale Guidance

[4] Deeply Supervised Depth Map Super-Resolution as Novel View Synthesis

[5] Perceptual Deep Depth Super-Resolution

[6] Channel Attention based Iterative Residual Kearning for Depth Map Super-Resolution

Stereo Image Super-Resolution

The dual camera has been widely used to estimate depth information. Meanwhile, stereo imaging can also be applied in image restoration. In the stereo image pair, we have two images with disparity much larger than one pixel. Therefore, full use of these two images can enhance the spatial resolution.

[1] Enhancing the Spatial Resolution of Stereo Images Using A Parallax Prior

[2] Learning Parallax Attention for Stereo Image Super-Resolution

[3] Parallax Attention for Unsupervised Stereo Correspondence Learning

[4] Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution

[5] A Stereo Attention Module for Stereo Image Super-Resolution

[6] Symmetric Parallax Attention for Stereo Image Super-Resolution

[7] Deep Bilateral Learning for Stereo Image Super-Resolution

[8] Stereoscopic Image Super-Resolution with Stereo Consistent Feature

[9] Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation

RECONSTRUCTION RESULTS

PSNR/SSIM comparison of lightweight SISR models (the number of model parameters less than 1000K) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

PSNR/SSIM comparison of large SISR models (the number of model parameters more than 1M, M=million) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

Owner
Juncheng Li
Juncheng Li
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022