Solving SMPL/MANO parameters from keypoint coordinates.

Overview

Minimal-IK

A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model.

Briefly, given joint coordinates (and optional other keypoints), the solver gives the corresponding model parameters.

Levenberg–Marquardt algorithm is used, the energy is simply the L2 distance between the keypoints.

As no prior nor regularization terms are used, it is not surprising that the code does not work well on "real" data. My intention to release the code was to give some hints on how to develope a customized IK solver. I would recommend to add more complicating terms for better performance.

Results

Qualitative

This is the example result on the SMPL body model. The left is the ground truth, and the right one is the estimation. You can notice the minor difference between the left hands.

Below is the example result of the MANO hand model. Left for ground truth, and right for estimation.

Quantitative

We test this approach on the AMASS dataset.

Mean Joint Error (mm) Mean Vertex Error (mm)
SMPL (body) 14.406 23.110
MANO (hand) 2.15 3.42

We assume that the global rotation is known. We discuss this further in the Notes section.

Usage

Models

  1. Download the official model from MPI.
  2. See config.py and set the official model path.
  3. See prepare_model.py, use the provided function to pre-process the model.

Solver

  1. See example.py, un-comment the corresponding code.
  2. python example.py.
  3. The example ground truth mesh and estimated mesh are saved to gt.obj and est.obj respectively.

Dependencies

Every required package is available via pip install.

Customization Notes

Again, we note that this approach cannot handle large global rotations (R0) due to the high non-convexity. For example, when the subject keeps the T pose but faces backwards.

In such cases, a good initialization, at least for R0, is necessary.

We also note that this approach is sensitive the the scale (i.e. length unit), as it would affect the MSE and the update step. Please consider using the default scale if you do not have special reasons.

Credits

  • @yxyyyxxyy for the quantitative test on the AMASS dataset.
  • @zjykljf for the starter code of the LM solver.
Owner
Yuxiao Zhou
Good luck, have fun.
Yuxiao Zhou
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022