An Open-Source Tool for Automatic Disease Diagnosis..

Overview

OpenMedicalChatbox

An Open-Source Package for Automatic Disease Diagnosis.

Overview

Due to the lack of open source for existing RL-base automated diagnosis methods. It's hard to make a comparison for different methods. OpenMedicalChatbox integrates several current diagnostic methods and datasets.

Dataset

At here, we show all the mentioned datasets in existing medical methods, including MZ-4, Dxy, MZ-10 and a simulated dataset based on Symcat. In goal.set in their folders, explicit symptoms, implicit symptoms and diagnosis given by doctors are recorded for each sample. Also, we provide the corresponding tools to extend them for each methods.

Here is the overview of datasets.

Name # of user goal # of diseases Ave. # of im. sym # of sym.
MZ-4 1,733 4 5.46 230
MZ-10 3,745 10 5.28 318
Dxy 527 5 1.67 41
SymCat-SD-90 30,000 90 2.60 266

Methods

Besides, we reproduce several mainstream models for comparison. For further information, you can refer to the paper.

  1. Flat-DQN: This is the baseline DQN agent, which has one layer policy and an action space including both symptoms and diseases.
  2. HRL-pretrained: This is a hierarchical model. The low level policy is pre-trained first and then the high level policy is trained. Besides, there is no disease classifier and the diagnosis is made by workers.
  3. REFUEL: This is a reinforcement learning method with reward shaping and feature rebuilding. It uses a branch to reconstruct the symptom vector to guide the policy gradient.
  4. KR-DS: This is an improved method based on Flat-DQN. It integrates a relational refinement branch and a knowledge-routed graph to strengthen the relationship between disease and symptoms. Here we adjust the code from fantasySE.
  5. GAMP: This is a GAN-based policy gradient network. It uses the GAN network to avoid generating randomized trials of symptom, and add mutual information to encourage the model to select the most discriminative symptoms.
  6. HRL: This is a new hierarchical policy we purposed for diagnosis. The high level policy consists of a master model that is responsible for triggering a low level model, the low level policy consists of several symptom checkers and a disease classifier. Also, we try not to divide symptoms into different group (Denoted as HRL (w/o grouped)) to demonstrate the strength of two-level structure and remove the separate disease discriminator (Denoted as HRL (w/o discriminator)) to show the effect of disease grouping in symptom information extraction.

Installation

  1. Install the packages
pip install OpenMedicalChatBox

or Cloning this repo

git clone https://github.com/Guardianzc/OpenMedicalChatBox.git
cd OpenMedicalChatBox
python setup.py install

After installation, you can try running demo.py to check if OpenMedicalChatBox works well

python demo.py
  1. Redirect the parameter file0 to the dataset needed. Note that if you use the KR-DS model, please redirect to "dataset_dxy" folder, and HRL dataset use the "HRL" folder.
  2. Tune the parameter as you need.
  3. Run the file or use the code below

Examples

The following code shows how to use OpenMedicalChatBox to apply different diagnosis method on datasets.

import OpenMedicalChatBox as OMCB
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

HRL_test = OMCB.HRL(dataset_path = '.\Data\mz4\HRL\\', model_save_path = './simulate', groups = 2, model_load_path = './simulate', cuda_idx = 1, train_mode = True)
HRL_test.run()

KRDS_test = OMCB.KRDS(dataset_path = '.\Data\mz4\dataset_dxy\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
KRDS_test.run()


Flat_DQN_test = OMCB.Flat_DQN(dataset_path = '.\Data\mz4\\', model_save_path = './simulate',  model_load_path = './simulate', cuda_idx = 1, train_mode = True)
Flat_DQN_test.run()


GAMP_test = OMCB.GAMP(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 1, train_mode = True)
GAMP_test.run()

REFUEL_test = OMCB.REFUEL(dataset_path = '.\Data\mz4\\', model_save_path = './simulate', model_load_path = './simulate', cuda_idx = 0, train_mode = True)
REFUEL_test.run()

The detail experimental parameters are shown in here.

Experiment

We show the accuracy for disease diagnosis (Acc.), recall for symptom recovery (M.R.) and the average turns in interaction (Avg. T).

  • In real world dataset
Dxy MZ-4 MZ-10
Model Acc. M.R. Avg.T Acc. M.R. Avg.T Acc. M.R. Avg.T
Flat-DQN 0.731 0.110 1.96 0.681 0.062 1.27 0.408 0.047 9.75
KR-DS 0.740 0.399 5.65 0.678 0.177 4.61 0.485 0.279 5.95
REFUEL 0.721 0.186 3.11 0.716 0.215 5.01 0.505 0.262 5.50
GAMP 0.731 0.268 2.84 0.644 0.107 2.93 0.500 0.067 1.78
Classifier Lower Bound 0.682 -- -- 0.671 -- -- 0.532 -- --
HRL (w/o grouped) 0.731 0.297 6.61 0.689 0.004 2.25 0.540 0.114 4.59
HRL (w/o discriminator) -- 0.512 8.42 -- 0.233 5.71 -- 0.330 8.75
HRL 0.779 0.424 8.61 0.735 0.229 5.08 0.556 0.295 6.99
Classifier Upper Bound 0.846 -- -- 0.755 -- -- 0.612 -- --
  • In synthetic dataset
Model Acc. M.R. Avg.T
Flat-DQN 0.343 0.023 1.23
KR-DS 0.357 0.388 6.24
REFUEL 0.347 0.161 4.56
GAMP 0.267 0.077 1.36
Classifier Lower Bound 0.308 -- --
HRL-pretrained 0.452 -- 3.42
HRL 0.504 0.495 6.48
Classifier Upper Bound 0.781 -- --

Reference

Citation

Please cite our paper if you use toolkit

@article{liao2020task,
  title={Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning},
  author={Liao, Kangenbei and Liu, Qianlong and Wei, Zhongyu and Peng, Baolin and Chen, Qin and Sun, Weijian and Huang, Xuanjing},
  journal={arXiv preprint arXiv:2004.14254},
  year={2020}
}
Owner
School of Data Science, Fudan University
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023