An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

Overview

EasyDatas

An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

Installation

pip install git+https://github.com/SymenYang/EasyDatas

Usage

Find files in disk

from EasyDatas.Prefab import ListFile, RecursionFiles, SpanFiles
from EasyDatas.Prefab import Chain

# Type 1: Find files recursively
# Example:
RFiles = RecursionFiles({
    "path" : path_to_root,
    "pattern" : ".*\.npy",
    "files" : True, # default to be true
    "dirs" : False # default to be true
})
RFiles.resolve()
print(len(RFiles)) # Total num of npy files in path_to_root
print(RFiles[0]) # {"path" : "/xxxx/xxxx/xxxx.npy"(pathlib.Path object)}

# Or Type 2: Hierarchically find files
HFiles = Chain([
    ListFile({
        "path" : path_to_root,
        "pattern" : ".*",
        "files" : False, # default to be true
    }),
    SpanFiles({
        "pattern" : ".*\.npy"
        "dirs" : False # default to be true
    })
])
HFiles.resolve()
print(len(HFiles)) # Total num of npy in files in path_to_root's depth-one sub-dir
print(HFiles[0]) # {"path" : "path_to_root/xxxx/xxxx.npy"(pathlib.Path object)}

ListFile, RecursionFiles, SpanFiles will output files/dirs in the dictionary order

Load files to memory

from EasyDatas.Prefab import LoadData, NumpyLoad,NumpyLoadNPY
#Type 1: use numpy.load to load a npy format file
LoadChain = Chain([
    RFiles, # defined in the previous section. Or any other EasyDatas module providing path
    NumpyLoadNPY({
        "data_name" : "data" # default to be "data"
    })
])
LoadChain.resolve()
print(len(loadChain)) # The same with RFiles
print(LoadChain[0]) # {"data" : np.ndarray}

# Type 2: write your own codes to load
import numpy as np
LoadChainCustom = Chain([
    HFiles,
    LoadData({
        "data_name" : "custom_data" # default to be "data"
        },
        function = lambda x : np.loadtxt(str(x))
    )
])
LoadChainCustom.resolve()
print(len(LoadChainCustom)) # The same with HFiles
print(LoadChainCustom[0]) # {"custom_data" : np.ndarray}

# The custom LoadData could be replaced by NumpyLoad module.

Preprocessing

from EasyDatas.Prefab import Picker, ToTensor
from EasyDatas.Core import Transform, CachedTransform

class customTransform1(CachedTransform): 
    # Cached Transform will process all datas and cache the results in disk.
    def custom_init(self):
        self.times = self.get_attr("times", 2) # default value is 2

    def deal_a_data(self, data : dict):
        data["data"] = data["data"] * self.times
        return data


class customTransform2(Transform): 
    # Non-cached transform will process a data when it is been needed.
    def deal_a_data(self, data : dict):
        data["data"] = data["data"] + 1
        return data


TrainDataset = Chain([
    LoadChain,
    Picker(
        pick_func = lambda data,idx,total_num : idx <= 0.8 * total_num
    ),
    customTransform1({
        "times" : 3
    }),
    customTransform1(),
    customTransform2(),
    ToTensor()
])
TrainDataset.resolve()
print(len(TrainDataset)) # 0.8 * len(LoadChain)
print(TrainDataset[0]) # {"data" : torch.Tensor with (raw data * 3 * 2 + 1) }

# Or we can write all of them in one chain and only resolve once
TrainDataset = Chain([
    RecursionFiles({
        "path" : path_to_root,
        "pattern" : ".*\.npy",
        "dirs" : False # default to be true
    }),
    NumpyLoadNPY({
        "data_name" : "data" # default to be "data"
    }),
    Picker(
        pick_func = lambda data,idx,total_num : idx <= 0.8 * total_num
    ),
    customTransform1({
        "times" : 3
    }),
    customTransform1(),
    customTransform2(),
    ToTensor()
])
TrainDataset.resolve()
print(len(TrainDataset)) # 0.8 * len(LoadChain)
print(TrainDataset[0]) # {"data" : torch.Tensor with (raw data * 3 * 2 + 1) }

All EasyDatas modules are the child of torch.utils.data.Dataset. Thus we can directly put them into a dataloader

About caches

An EasyDatas module will store caches only if the args["need_cache"] is True. The defualt setting is False. Cache will be save in the args["cache_root"] path, which is set to CWD in default. The cache name will contain two parts. The first is about the module's args when it was created, the second is about the module's previous modules cache name. All the information are encoded to a string and EasyDatas will use that string to determine whether there is a valid cache for this module instance. Therefore, if one module's args have been changed, all modules' cache after this module will be recomputed.

Custom cache name

One can override name_args(self) function to change the properties that need to be considerd into cache name. The default implementation is:

class EasyDatasBase
    ...
    def name_args(self):
            """
        Return args dict for getting cache file's name
        Default to return all hashable values in self.args except cache_root
        """
        ret = {}
        for key in self.args:
            if isinstance(self.args[key],collections.Hashable):
                if key == "cache_root":
                    continue
                ret[key] = self.args[key]
        return ret
    ...

Processing Datas

All EasyDatas module have two functions to deal datas. The first is deal_datas and the second is deal_a_data. In default, deal_datas will send all datas to deal_a_data one-by-one and collect the return value as the output of this module. In most situation, customizing deal_a_data is safe, clear and enough. But in some other situation, we want to deal all datas by our own, we could override deal_datas function. There are two useful functions in EasyDatasBase class that will be helpful in deal_datas, which are self.get()and self.put()

class EasyDatasBases:
    def get(self,idx = None,do_copy = True) -> dict|None:
        pass

    def put(self,data_dict : dict,idx = -1) -> None:
        pass

If idx is not provided, get will automaticaly get datas from previous module one-by-one. If it meets the end, it will return None. A module with no previous module could not use get function. If the do_copy is set to False, it will directly return previous module's data, which is a reference. Otherwise, it will deep copy the data and return.
put function will automaticaly put datas in to return and cache list. if idx is provided, the data_dict will be put in to the position. The total number of datas will be count automaticaly in put function.
Besides, in deal_a_data function, one can use put functions and return None for increasing the data items.

Other modules

There are some other modules that are not introduced beyond.

EasyDatas.Core.EasyDatasBase

Defined base functions, logging and default processing

EasyDatas.Core.RawDatas

Base class for ListFile, RecursionFiles. RawDatas needs no previous dataset and the deal_datas function needs to be overrided

EasyDatas.Core.Merge

Merge multiple EasyDatas modules by merge their data dict. The modules need to have the same length.

# assume A is an EasyDatas module with A[0] == {"data_1" : xxx}
# assume B is an EasyDatas module with B[0] == {"data_2" : xxx}
M = Merge([A,B])
print(len(M)) # The same with A and B
print(M[0]) # {"data_1" : xxx, "data_2" : xxx}

EasyDatas.Core.Stack

Stack multiple EasyDatas modules by combine their items.

# assume A is an EasyDatas module with A[0] == {"data_1" : xxx} and len(A) = 1000
# assume B is an EasyDatas module with B[0] == {"data_2" : xxx} and len(B) = 500
S = Stack([A,B])
print(len(S)) # 1500 which is len(A) + len(B)
print(S[999]) # {"data_1" : xxx}
print(S[1000]) # {"data_2" : xxx}

In most cases, Stack are used to stack modules which have same data format.

Owner
Ximing Yang
Fudan University
Ximing Yang
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021