Asterisk is a framework to generate high-quality training datasets at scale

Related tags

Deep LearningAsterisk
Overview

Asterisk*

Generating Training Data made Easy

Asterisk is a framework to generate high-quality training datasets at scale. Instead of relying on the end users to write user-defined heuristics, the proposed approach exploits a small set of labeled data and automatically produces a set of heuristics to assign initial labels. In order to enhance the quality of the generated labels, the framework improves the accuracies of the heuristics by applying a novel data-driven AL process. During the process, the system examines the generated weak labels along with the modeled accuracies of the heuristics to help the learner decide on the points for which the user should provide true labels.

Installation

To install Asterisk, you can use pip:

pip install asterisk

or clone the Git repository and run:

pip install -e .

within it.

Publications

  • M. Nashaat, A. Ghosh, J. Miller, and S. Quader, “Asterisk: Generating Large Training Datasets with Automatic Active Supervision,” ACM Transactions on Data Science (TDS), May 2020.
  • M. Nashaat, A. Ghosh, J. Miller, and S. Quader, "WeSAL: Applying Active Supervision to Find High-quality Labels at Industrial Scale", Proceedings of the 53rd Hawaii International Conference on System Sciences, HI, USA, 2020, pp. 219-228.
  • M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston and J. Puget, "Hybridization of Active Learning and Data Programming for Labeling Large Industrial Datasets," 2018 IEEE International Conference on Big Data (Big Data) , Seattle, WA, USA, 2018, pp. 46-55. doi: 10.1109/BigData.2018.8622459.
Owner
Mona Nashaat
Mona Nashaat
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021