Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

Overview

MAAD: A Model for Attended Awareness in Driving

Install // Datasets // Training // Experiments // Analysis // License

Official PyTorch implementation of MAAD: A Model and Dataset for "Attended Awareness" in Driving invented by the RAD Team at Toyota Research Institute (TRI) Deepak Gopinath, Guy Rosman, Simon Stent, Katsuya Terahata, Luke Fletcher, Brenna Argall, John Leonard.

MAAD affords estimation of attended awareness based on noisy gaze estimates and scene video over time. This learned model additionally affords saliency estimation and refinement of a noisy gaze signal. We demonstrate the performance of the model on a new, annotated dataset that explores the gaze and perceived attended awareness of subjects as they observe a variety of driving scenarios. In this dataset, we provide a surrogate annotated third person estimate of attended awareness as a reproducible supervisory cue.

Paper to be available on Arxiv soon!

Install

You need a machine with recent Nvidia drivers and a GPU with at least 16GB of memory (more for the bigger models at higher resolution). We recommend using conda to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04 and PyTorch 1.7.0):

git clone https://github.com/ToyotaResearchInstitute/att-aware.git
cd att-aware
# if you want to use conda (recommended)
conda env create -f environment.pt170.yml
conda activate pt170

We will list below all commands as if run directly inside the conda environment. If you encounter out of memory issues, try a lower batch_size parameter in the args_file.py.

Datasets

All the datasets are assumed to be downloaded in ~/data/.

Videos

MAAD uses subset of videos (8 videos of urban driving) from th Dr(Eye)ve Dataset. The entire Dr(Eye)ve dataset can be downloaded at Dr(Eye)ve Full Dataset. We collected gaze and attended awareness annotation data on the videos [06, 07, 10, 11, 26, 35, 53, 60]. Each video folder should be located at ~/data/dreyeve/VIDEO_ID

Gaze Dataset

Our complete dataset comprises approximately 24.5 hours of gaze tracking data captured via multiple exposures from different subjects. We recruited 23 subjects (aged 20-55), who each watched a subset of video clips with their heads mounted in a chin-rest after a 9-point calibration procedure. Their primary task was to monitor the driving scene as a safety driver might monitor an autonomous vehicle. While not a perfect substitute for in-car driving data collection, this primary task allowed for the capture of many of the characteristics of attentive driving behavior. In order to explore the effect of the cognitive task difference (vs. in-car data) on the gaze and awareness estimates, subjects viewed the video under different cognitive task modifiers, as detailed in Section~\ref{sec:data:conditions} (data collected with non-null cognitive task modifiers comprise 30% of total captured gaze data). Around 45% of video stimuli were watched more than once, of which 11% (40 minutes) was observed by 16 or more subjects.

The gaze dataset will be made available as a pkl (all_videos_subjects_tasks_gaze_data.pkl) file. Each subjects' gaze data is stored as a pandas dataframe in the pkl file (organized according to video, subject and task id). The pkl file is expected to be located at ~/data/all_videos_subjects_tasks_gaze_data.pkl

Attended Awareness Annotation Dataset

Our complete attended awareness annotation dataset consists of 54019 third-party annotations of approximately 10s long videos from the Gaze Dataset. Annotators watched a video snippet where the subject's gaze was marked by two circles centered at the gaze point. One circle (green) size was set to the diameter of a person's central foveal vision area at the viewing distance. Another circle (red) was set to a diameter twice the foveal vision circle. At the end of the video snippet, a specific location was chosen and the annotators were asked whether they believe the subject has attended to that location on a scale between 1 and 5 (1-no, definitely not aware, 5-yes, definitely aware). Each annotation consists of the following fields:

video_id | query_frame | subject | cognitive_modifier | query_x | query_y | anno_is_aware | anno_is_object | anno_expected_awareness | anno_surprise_factor

Any field which starts with anno is the annotation. For more details refer to supplementary material of the paper. Datasets are assumed to be downloaded in ~/data/datasets/MAAD_ATT_AWARENESS_LABELS.csv (can be a symbolic link).

Both the gaze dataset and the annotation dataset are available as a zipped folder for download [here].

Optic Flow

MAAD uses optic flow of the videos as a side-channel information to perform temporal regularizations. For the purposes of our model, we utilized [RAFT: Recurrent All Pairs Field Transforms for Optical Flow] to generate optic flow. For each video in the dataset, the optic flow model has to be run all frame pairs N frames apart. The current code assumes that the optic flow generated is at half-resolution with a padding of 2 pixels (on each side) along the y direction. These parameters denoted as OPTIC_FLOW_SCALE_FACTOR, OPTIC_FLOW_H_PAD, OPTIC_FLOW_W_PAD can be altered in the att-aware/src/maad/utils/maad_consts.py file to suit your needs.

Optic flow is assumed to be cached as ~/maad_cache/optic_flow/VIDEO_ID/frame_N.npy

Segmentation Masks

MAAD uses segmentation masks for the videos in order to perform diffusivity-based spatial regularization. For the purposes of our model, we used MaskRCNN to generate the segmentation masks for each frame for each video.

Segmentation masks are assumed to be cached as ~/maad_cache/segmentations_from_video/VIDEO_ID/segmentations_frames/frame_N.png

During training, lower resolution mask images will be generated by resizing the full sized masks and will be cached back into the same location as frame_N_ar_{aspect_ratio_reduction_factor}.png.

Training

MAAD model training can be done using the train.py script. Run the following command to train a model using all 8 videos (split into a train and test sets) using the parameter settings used in the ICCV paper. python train.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp Default resolution used is 240 x 135. All training args are present in /att-aware/src/maad/config/args_file.py

Models will be saved at ~/maad/models/TRAINING_HASH_NAME

Experiments

Three different experiments are proposed for MAAD. All experiments are done using the test split. Gaze Denoising and Awareness Estimation uses the trained model for inference. Gaze Calibration experiment involves continued training to optimize the miscalibration transform. All experiment results are saved as jsons in ~/maad/results/

Gaze Denoising

MAAD can be used for denoising noisy gaze estimates by relying on saliency information. The denoising experiment script is located at att-aware/src/scripts/experiment_maad_denoising.py

The script can be run using the following command: python experiment_maad_denoising.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --max_inference_num_batches 1000

Gaze Recalibration

MAAD can be used for recalibration of a miscalibrated gaze (due to errors in DMS). The calibration experiment script is located at att-aware/src/scripts/experiment_maad_calibration.py The calibration experiment script can be run using the follow command:

python experiment_maad_calibration_optimization.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --dropout_ratio '{"driver_facing":0.0, "optic_flow":0.0}'

Note that, the above command assumes that the model used for recalibration was trained using the default cost parameters. It is important that the cost coefficients match the original values. Furthermore, the dropout_ratio for driver_facing gaze module should be set at 0.0 so that gaze is available as a side-channel input to the network at all times. The miscalibration noise levels can be specified using the miscalibration_noise_levels argument.

Awareness Estimation

MAAD can used for attended awareness estimation based on scene context and an imperfect gaze information. The attended awareness estimation script is located at att-aware/src/scripts/experiment_maad_awareness_estimation.py

The attended awareness estimation script can be run using the following command: python experiment_maad_awareness_estimation.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt

Analysis

We have also provided scripts to parse and compute statistics on the results outputted by the experiment scripts. These scripts are available at att-aware/src/scripts/parse_*_data.py where * could be denoising, calibration_optimization, awareness_estimation

The results of the parsing scripts will be outputted directly in the terminal. The parsing scripts can be run using the following commands. python parse_denoising_data.py --results_json_prefix ~/maad/results/GAZE_DENOISING. Assumes that the result of the denoising experiment is in GAZE_DENOISING.json

python parse_awareness_estimation_data.py --results_json_prefix ~/maad/results/AWARENESS_ESTIMATION. Assumes that the result of the awareness estimation experiment is in AWARENESS_ESTIMATION.json

The results of the calibration experiments are expected to stored in files with the following filename convention experiment_type_gaze_calibration_miscalibration_noise_level_NOISELEVEL_optimization_run_num_OPTIMIZATIONNUM_FILENAMEAPPEND.json, where NOISELEVEL is in the miscalibration_noise_levels argument in experiment_maad_calibration_optimization.py OPTIMIZATIONNUM goes from 0 to num_optimization_runs-1 and FILENAMEAPPEND is the filename_append argument in the experiment.

python parse_calibration_optimization_data.py --folder_containing_results FOLDER_CONTAINING_JSONS --num_optimization_runs (same val as used in the experiment) --miscalibration_noise_levels (same val as used in the experiment) --filename_append (same val as used in the experiment)

License

The source code is released under the MIT License

Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
LBK 20 Dec 02, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022