PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

Overview

logo

PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

logo

Details of the PhoNLP model architecture and experimental results can be found in our following paper:

@article{PhoNLP,
title     = {{PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing}},
author    = {Linh The Nguyen and Dat Quoc Nguyen},
journal   = {arXiv preprint},
volume    = {arXiv:2101.01476},
year      = {2021}
}

Please CITE our paper when PhoNLP is used to help produce published results or incorporated into other software.

Although we specify PhoNLP for Vietnamese, usage examples below in fact can directly work for other languages that have gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing, and a pre-trained BERT-based language model available from transformers.

Installation

  • Python version >= 3.6; PyTorch version >= 1.4.0
  • PhoNLP can be installed using pip as follows: pip3 install phonlp
  • Or PhoNLP can also be installed from source with the following commands:
     git clone https://github.com/VinAIResearch/PhoNLP
     cd PhoNLP
     pip3 install -e .
    

Usage example: Command lines

To play with the examples using command lines, please install phonlp from the source:

git clone https://github.com/VinAIResearch/PhoNLP
cd PhoNLP
pip3 install -e . 

Training

cd phonlp/models
python3 run_phonlp.py --mode train --save_dir  \
	--pretrained_lm  \
	--lr  --batch_size  --num_epoch  \
	--lambda_pos  --lambda_ner  --lambda_dep  \
	--train_file_pos  --eval_file_pos  \
	--train_file_ner  --eval_file_ner  \
	--train_file_dep  --eval_file_dep 

--lambda_pos, --lambda_ner and --lambda_dep represent mixture weights associated with POS tagging, NER and dependency parsing losses, respectively, and lambda_pos + lambda_ner + lambda_dep = 1.

Example:

cd phonlp/models
python3 run_phonlp.py --mode train --save_dir ./phonlp_tmp \
	--pretrained_lm "vinai/phobert-base" \
	--lr 1e-5 --batch_size 32 --num_epoch 40 \
	--lambda_pos 0.4 --lambda_ner 0.2 --lambda_dep 0.4 \
	--train_file_pos ../sample_data/pos_train.txt --eval_file_pos ../sample_data/pos_valid.txt \
	--train_file_ner ../sample_data/ner_train.txt --eval_file_ner ../sample_data/ner_valid.txt \
	--train_file_dep ../sample_data/dep_train.conll --eval_file_dep ../sample_data/dep_valid.conll

Evaluation

cd phonlp/models
python3 run_phonlp.py --mode eval --save_dir  \
	--batch_size  \
	--eval_file_pos  \
	--eval_file_ner  \
	--eval_file_dep  

Example:

cd phonlp/models
python3 run_phonlp.py --mode eval --save_dir ./phonlp_tmp \
	--batch_size 8 \
	--eval_file_pos ../sample_data/pos_test.txt \
	--eval_file_ner ../sample_data/ner_test.txt \
	--eval_file_dep ../sample_data/dep_test.conll 

Annotate a corpus

cd phonlp/models
python3 run_phonlp.py --mode annotate --save_dir  \
	--batch_size  \
	--input_file  \
	--output_file  

Example:

cd phonlp/models
python3 run_phonlp.py --mode annotate --save_dir ./phonlp_tmp \
	--batch_size 8 \
	--input_file ../sample_data/input.txt \
	--output_file ../sample_data/output.txt 

The pre-trained PhoNLP model for Vietnamese is available at HERE!

Usage example: Python API

import phonlp
# Automatically download the pre-trained PhoNLP model 
# and save it in a local machine folder
phonlp.download(save_dir='./pretrained_phonlp')
# Load the pre-trained PhoNLP model
model = phonlp.load(save_dir='./pretrained_phonlp')
# Annotate a corpus where each line represents a word-segmented sentence
model.annotate(input_file='input.txt', output_file='output.txt')
# Annotate a word-segmented sentence
model.print_out(model.annotate(text="Tôi đang làm_việc tại VinAI ."))

By default, the output for each input sentence is formatted with 6 columns representing word index, word form, POS tag, NER label, head index of the current word and its dependency relation type:

1	Tôi	P	O	3	sub	
2	đang	R	O	3	adv
3	làm_việc	V	O	0	root
4	tại	E	O	3	loc
5	VinAI	Np 	B-ORG	4	prob
6	.	CH	O	3	punct

In addition, the output can be formatted following the 10-column CoNLL format where the last column is used to represent NER predictions. This can be done by adding output_type='conll' into the model.annotate() function. Also, in the model.annotate() function, the value of the parameter batch_size can be adjusted to fit your computer's memory instead of using the default one at 1 (batch_size=1). Here, a larger batch_size would lead to a faster performance speed.

Owner
VinAI Research
VinAI Research
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s

Google 1.4k Dec 28, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
🦆 Contextually-keyed word vectors

sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile

Explosion 1.5k Dec 25, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023