CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

Overview

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

This is the official implementation code of the paper "CondLaneNet: a Top-to-down Lane Detection Framework Based on ConditionalConvolution". (Link: https://arxiv.org/abs/2105.05003) We achieve state-of-the-art performance on multiple lane detection benchmarks.

Architecture,

Installation

This implementation is based on mmdetection(v2.0.0). Please refer to install.md for installation.

Datasets

We conducted experiments on CurveLanes, CULane and TuSimple. Please refer to dataset.md for installation.

Models

For your convenience, we provide the following trained models on Curvelanes, CULane, and TuSimple datasets

Model Speed F1 Link
curvelanes_small 154FPS 85.09 download
curvelanes_medium 109FPS 85.92 download
curvelanes_large 48FPS 86.10 download
culane_small 220FPS 78.14 download
culane_medium 152FPS 78.74 download
culane_large 58FPS 79.48 download
tusimple_small 220FPS 97.01 download
tusimple_medium 152FPS 96.98 download
tusimple_large 58FPS 97.24 download

Testing

CurveLanes 1 Edit the "data_root" in the config file to your Curvelanes dataset path. For example, for the small version, open "configs/curvelanes/curvelanes_small_test.py" and set "data_root" to "[your-data-path]/curvelanes".

2 run the test script

cd [project-root]
python tools/condlanenet/curvelanes/test_curvelanes.py configs/condlanenet/curvelanes/curvelanes_small_test.py [model-path] --evaluate

If "--evaluate" is added, the evaluation results will be printed. If you want to save the visualization results, you can add "--show" and add "--show_dst" to specify the save path.

CULane

1 Edit the "data_root" in the config file to your CULane dataset path. For example,for the small version, you should open "configs/culane/culane_small_test.py" and set the "data_root" to "[your-data-path]/culane".

2 run the test script

cd [project-root]
python tools/condlanenet/culane/test_culane.py configs/condlanenet/culane/culane_small_test.py [model-path]
  • you can add "--show" and add "--show_dst" to specify the save path.
  • you can add "--results_dst" to specify the result saving path.

3 We use the official evaluation tools of SCNN to evaluate the results.

TuSimple

1 Edit the "data_root" in the config file to your TuSimple dataset path. For example,for the small version, you should open "configs/tusimple/tusimple_small_test.py" and set the "data_root" to "[your-data-path]/tuSimple".

2 run the test script

cd [project-root]
python tools/condlanenet/tusimple/test_tusimple.py configs/condlanenet/tusimple/tusimple_small_test.py [model-path]
  • you can add "--show" and add "--show_dst" to specify the save path.
  • you can add "--results_dst" to specify the result saving path.

3 We use the official evaluation tools of TuSimple to evaluate the results.

Speed Test

cd [project-root]
python tools/condlanenet/speed_test.py configs/condlanenet/culane/culane_small_test.py [model-path]

Training

For example, train CULane using 4 gpus:

cd [project-root]
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29001 tools/dist_train.sh configs/condlanenet/culane/culane_small_train.py 4 --no-validate 

Results

CurveLanes

Model F1 Speed GFLOPS
Small(ResNet-18) 85.09 154FPS 10.3
Medium(ResNet-34) 85.92 109FPS 19.7
Large(ResNet-101) 86.10 48FPS 44.9

CULane

Model F1 Speed GFLOPS
Small(ResNet-18) 78.14 220FPS 10.2
Medium(ResNet-34) 78.74 152FPS 19.6
Large(ResNet-101) 79.48 58FPS 44.8

TuSimple

Model F1 Speed GFLOPS
Small(ResNet-18) 97.01 220FPS 10.2
Medium(ResNet-34) 96.98 152FPS 19.6
Large(ResNet-101) 97.24 58FPS 44.8

Visualization results

Results

Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023