ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

Overview

ManipulaTHOR: A Framework for Visual Object Manipulation

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi, Roozbeh Mottaghi

(Oral Presentation at CVPR 2021)

(Project Page)--(Framework)--(Video)--(Slides)

We present ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm. Our framework is built upon a physics engine and enables realistic interactions with objects while navigating through scenes and performing tasks. Object manipulation is an established research domain within the robotics community and poses several challenges including avoiding collisions, grasping, and long-horizon planning. Our framework focuses primarily on manipulation in visually rich and complex scenes, joint manipulation and navigation planning, and generalization to unseen environments and objects; challenges that are often overlooked. The framework provides a comprehensive suite of sensory information and motor functions enabling development of robust manipulation agents.

This code base is based on AllenAct framework and the majority of the core training algorithms and pipelines are borrowed from AllenAct code base.

Citation

If you find this project useful in your research, please consider citing:

   @inproceedings{ehsani2021manipulathor,
     title={ManipulaTHOR: A Framework for Visual Object Manipulation},
     author={Ehsani, Kiana and Han, Winson and Herrasti, Alvaro and VanderBilt, Eli and Weihs, Luca and Kolve, Eric and Kembhavi, Aniruddha and Mottaghi, Roozbeh},
     booktitle={CVPR},
     year={2021}
   }

Contents

💻 Installation

To begin, clone this repository locally

git clone https://github.com/ehsanik/manipulathor.git
See here for a summary of the most important files/directories in this repository

Here's a quick summary of the most important files/directories in this repository:

  • utils/*.py - Helper functions and classes including the visualization helpers.
  • projects/armpointnav_baselines
    • experiments/
      • ithor/armpointnav_*.py - Different baselines introduced in the paper. Each files in this folder corresponds to a row of a table in the paper.
      • *.py - The base configuration files which define experiment setup and hyperparameters for training.
    • models/*.py - A collection of Actor-Critic baseline models.
  • plugins/ithor_arm_plugin/ - A collection of Environments, Task Samplers and Task Definitions
    • ithor_arm_environment.py - The definition of the ManipulaTHOREnvironment that wraps the AI2THOR-based framework introduced in this work and enables an easy-to-use API.
    • itho_arm_constants.py - Constants used to define the task and parameters of the environment. These include the step size taken by the agent, the unique id of the the THOR build we use, etc.
    • ithor_arm_sensors.py - Sensors which provide observations to our agents during training. E.g. the RGBSensor obtains RGB images from the environment and returns them for use by the agent.
    • ithor_arm_tasks.py - Definition of the ArmPointNav task, the reward definition and the function for calculating the goal achievement.
    • ithor_arm_task_samplers.py - Definition of the ArmPointNavTaskSampler samplers. Initializing the sampler, reading the json files from the dataset and randomly choosing a task is defined in this file.
    • ithor_arm_viz.py - Utility functions for visualization and logging the outputs of the models.

You can then install requirements by running

pip install -r requirements.txt

Python 3.6+ 🐍 . Each of the actions supports typing within Python.

AI2-THOR <43f62a0> 🧞 . To ensure reproducible results, please install this version of the AI2THOR.

📝 ArmPointNav Task Description

ArmPointNav is the goal of addressing the problem of visual object manipulation, where the task is to move an object between two locations in a scene. Operating in visually rich and complex environments, generalizing to unseen environments and objects, avoiding collisions with objects and structures in the scene, and visual planning to reach the destination are among the major challenges of this task. The example illustrates a sequence of actions taken a by a virtual robot within the ManipulaTHOR environment for picking up a vase from the shelf and stack it on a plate on the countertop.

📊 Dataset

To study the task of ArmPointNav, we present the ArmPointNav Dataset (APND). This consists of 30 kitchen scenes in AI2-THOR that include more than 150 object categories (69 interactable object categories) with a variety of shapes, sizes and textures. We use 12 pickupable categories as our target objects. We use 20 scenes in the training set and the remaining is evenly split into Val and Test. We train with 6 object categories and use the remaining to test our model in a Novel-Obj setting. For more information on dataset, and how to download it refer to Dataset Details.

🖼️ Sensory Observations

The types of sensors provided for this paper include:

  1. RGB images - having shape 224x224x3 and an FOV of 90 degrees.
  2. Depth maps - having shape 224x224 and an FOV of 90 degrees.
  3. Perfect egomotion - We allow for agents to know precisely what the object location is relative to the agent's arm as well as to its goal location.

🏃 Allowed Actions

A total of 13 actions are available to our agents, these include:

  1. Moving the agent
  • MoveAhead - Results in the agent moving ahead by 0.25m if doing so would not result in the agent colliding with something.

  • Rotate [Right/Left] - Results in the agent's body rotating 45 degrees by the desired direction.

  1. Moving the arm
  • Moving the wrist along axis [x, y, z] - Results in the arm moving along an axis (±x,±y, ±z) by 0.05m.

  • Moving the height of the arm base [Up/Down] - Results in the base of the arm moving along y axis by 0.05m.

  1. Abstract Grasp
  • Picks up a target object. Only succeeds if the object is inside the arm grasper.
  1. Done Action
  • This action finishes an episode. The agent must issue a Done action when it reaches the goal otherwise the episode considers as a failure.

Defining a New Task

In order to define a new task, redefine the rewarding, try a new model, or change the enviornment setup, checkout our tutorial on defining a new task here.

🏋 Training An Agent

You can train a model with a specific experiment setup by running one of the experiments below:

python3 main.py -o experiment_output -s 1 -b projects/armpointnav_baselines/experiments/ithor/ <EXPERIMENT-NAME>

Where <EXPERIMENT-NAME> can be one of the options below:

armpointnav_no_vision -- No Vision Baseline
armpointnav_disjoint_depth -- Disjoint Model Ablation
armpointnav_rgb -- Our RGB Experiment
armpointnav_rgbdepth -- Our RGBD Experiment
armpointnav_depth -- Our Depth Experiment

💪 Evaluating A Pre-Trained Agent

To evaluate a pre-trained model, (for example to reproduce the numbers in the paper), you can add --mode test -c <WEIGHT-ADDRESS> to the end of the command you ran for training.

In order to reproduce the numbers in the paper, you need to download the pretrained models from here and extract them to pretrained_models. The full list of experiments and their corresponding trained weights can be found here.

python3 main.py -o experiment_output -s 1 -b projects/armpointnav_baselines/experiments/ithor/ <EXPERIMENT-NAME> --mode test -c <WEIGHT-ADDRESS>
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021