[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Related tags

Deep LearningDRML
Overview

Deep Relational Metric Learning

This repository is the official PyTorch implementation of Deep Relational Metric Learning.

Framework

AEL

DRML

Datasets

CUB-200-2011

Download from here.

Organize the dataset as follows:

- cub200
    |- train
    |   |- class0
    |   |   |- image0_1
    |   |   |- ...
    |   |- ...
    |- test
        |- class100
        |   |- image100_1
        |   |- ...
        |- ...

Cars196

Download from here.

Organize the dataset as follows:

- cars196
    |- train
    |   |- class0
    |   |   |- image0_1
    |   |   |- ...
    |   |- ...
    |- test
        |- class98
        |   |- image98_1
        |   |- ...
        |- ...

Requirements

To install requirements:

pip install -r requirements.txt

Training

Baseline models

To train the baseline model with the ProxyAnchor loss on CUB200, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy_baseline \
--dataset cub200 \
--num_classes 100 \
--batch_size 120 \
--delete_old

To train the baseline model with the ProxyAnchor loss on Cars196, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy_baseline \
--dataset cars196 \
--num_classes 98 \
--batch_size 120 \
--delete_old

DRML models

To train the proposed DRML model using the ProxyAnchor loss on CUB200 in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy \
--dataset cub200 \
--num_classes 100 \
--batch_size 120 \
--delete_old

To train the proposed DRML model using the ProxyAnchor loss on Cars196 in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy \
--dataset cars196 \
--num_classes 98 \
--batch_size 120 \
--delete_old

Device

We tested our code on a linux machine with an Nvidia RTX 3090 GPU card. We recommend using a GPU card with a memory > 8GB (BN-Inception + batch-size of 120 ).

Results

The baseline models achieve the following performances:

Model name Recall @ 1 Recall @ 2 Recall @ 4 Recall @ 8 NMI
cub200-ProxyAnchor-baseline 67.3 77.7 85.7 91.4 68.7
cars196-ProxyAnchor-baseline 84.4 90.7 94.3 96.8 69.7

Our models achieve the following performances:

Model name Recall @ 1 Recall @ 2 Recall @ 4 Recall @ 8 NMI
cub200-ProxyAnchor-ours 68.7 78.6 86.3 91.6 69.3
cars196-ProxyAnchor-ours 86.9 92.1 95.2 97.4 72.1

COMING SOON

  • We will upload the code for cross-validation setting soon.
  • We will update the optimal hyper-parameters of the experiments soon.
Owner
Borui Zhang
I am a first year Ph.D student in the Department of Automation at THU. My research direction is computer vision.
Borui Zhang
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023