constructing maps of intellectual influence from publication data

Overview

Influencemap Project @ ANU

Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of applications like google scholar and the various metrics created for ranking papers, authors, conferences, etc.

We aim to provide a visualisation tool which allows users to easily search and visualise the flow of academic influence. Our visualisation maps influence in the form of an influence flower. We calculate influence as a function of the number of citations between two entities (look below for information on our definition of influence).

The node in the centre of the flower denotes the ego entity, the entitiy in which we are looking at influence with respect to. The leaf nodes are the most influential entities with respect to the ego. (We define the ego as a collection of papers. If it is an author, it is the collection of papers that the author has authored)

Each of the edges of the graph signifies the flow of influence to and from the ego node, the strength of this relation is reflected in the thickness of the edge. The red edges denote the influence the ego has towards the outer entities (an outer entity citing a paper by the ego). The blue edges denote the influence the outer entities have towards the ego (the ego cites a paper by one of the outer entities).

The colour of the outer nodes signifies the ratio of influence in and out. A blue node indicates that the associated entity has influenced the ego more than the ego has influenced itself. Likewise, a red node indicates the ego has influenced the node's entity more than it has influenced the ego.

We define two entities to be coauthors if the entities have contributed to the same paper. Coauthors of the ego are signified by nodes with greyed out names.

Data

We use the microsoft academic graph (MAG) dataset for our visualisation. The dataset is a large curation of publication indexed by Bing. From MAG, we use the following fields of the paper entries in the dataset,

  • Citation links
  • Authors
  • Conferences
  • Journals
  • Author Affiliations

Influence

To quantify academic influence, we define influence as a function of paper citations. Each citation which the ego is apart of contributes to the overall influence map of an ego. To prevent papers with a large number of entities contributing from creating an overwhelming amount of influence, we normalise the influence contribution by the number of entities in the cited paper.

For example, consider the following four paper database where we only consider entities which are authors.

Name Paper no. authors cites papers
John Smith Algorithms 2 [Linear Algebra]
John Smith Machine Learning 3 [Linear Algebra, Computation]
Maria Garcia Linear Algebra 2 None
Maria Garcia Computation 4 [Algorithms]

In this case John's influence on Maria is 0.5 (John's paper Algorithm's has a weight of 0.5 and was cited once by Maria).

On the other hand Maria's influence on John is 1.25 (Linear Algebra has a weight of 0.5 and it was cited twice by John, Computation has a weight of 0.25 and was cited once by John).

We aggregate the pairwise influence of entities associated with the papers of the ego to generate the nodes of a flower. Each flowers' outer nodes can be a collection of several types of entities. In our influence flower application, we present 4 different flower types:

  1. Author outer nodes
  2. Venue (conferences or journals) outer nodes
  3. Author Affiliation outer nodes
  4. Paper topic outer nodes

Filtering self-citations

We define a self-citation between papers and a cited paper as a relation dependent on the ego. A paper citation is a self-citation if both papers have the ego as an author (a venue, an institution, or a topic).

Filtering co-contributors

The Influence Flower is able to capture less obvious influence outside of one’s co-author networks with the filtering. We define two entities to be co-contributors if the entities have contributed to the same paper. For the venue type entity, co-contribution indicates if the ego has published a paper to the venue. For the topic type entity, it means that the ego has written a paper of the topic. Co-contributors of the ego are indicated by nodes with greyed out names.

Other candidate definitions of influence

We have described influence as the sum of citations from one person (or venue or affiliation) to another, weighted by the number of authors in the cited paper. Similar methods were considered early on in the project which included combinations of different weighting schemes. We looked at the eight combinations of three mutually exclusive weightings:

  1. Weighting by the number of authors on the citing paper;
  2. Weighting by the number of authors on the cited paper; and
  3. Weighting by the number of papers referenced by the citing paper.

Due to the lack of a ground truth value of influence to compare these definitions to, we evaluated the eight combinations of these weightings empirically by discussing with researchers which of the definitions produced flowers that most accurately reflected their opinions of who they have influenced and been influenced by.

Other definitions of influence which have not yet been explored with this data include existing measures for node centrality in graphs. By using citation data from MAG to define a directed graph where nodes represent authors, venues or affiliations, and edges are derived from citations between nodes, we could explore using metrics such as closeness, betweenness and eigenvector centrality. These metrics are more appropriate for defining the influence of an entity relative to the whole network.

Owner
CS Metrics
CS Metrics
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022