SPEAR: Semi suPErvised dAta progRamming

Overview

PyPI docs license website GitHub repo size



Semi-Supervised Data Programming for Data Efficient Machine Learning

SPEAR is a library for data programming with semi-supervision. The package implements several recent data programming approaches including facility to programmatically label and build training data.

Pipeline

  • Design Labeling functions(LFs)
  • generate pickle file containing labels by passing raw data to LFs
  • Use one of the Label Aggregators(LA) to get final labels



SPEAR provides functionality such as

  • development of LFs/rules/heuristics for quick labeling
  • compare against several data programming approaches
  • compare against semi-supervised data programming approaches
  • use subset selection to make best use of the annotation efforts

Labelling Functions (LFs)

  • discrete LFs - Users can define LFs that return discrete labels
  • continuous LFs - return continuous scores/confidence to the labels assigned

Approaches Implemented

You can read this paper to know about below approaches

  • Only-L
  • Learning to Reweight
  • Posterior Regularization
  • Imply Loss
  • CAGE
  • Joint Learning

Data folder for SMS can be found here. This folder needs to be placed in the same directory as notebooks folder is in, to run the notebooks or examples.

Installation

Method 1

To install latest version of SPEAR package using PyPI:

pip install decile-spear

Method 2

SPEAR requires Python 3.6 or later. First install submodlib. Then install SPEAR:

git clone https://github.com/decile-team/spear.git
cd spear
pip install -r requirements/requirements.txt

Citation

@misc{abhishek2021spear,
      title={SPEAR : Semi-supervised Data Programming in Python}, 
      author={Guttu Sai Abhishek and Harshad Ingole and Parth Laturia and Vineeth Dorna and Ayush Maheshwari and Ganesh Ramakrishnan and Rishabh Iyer},
      year={2021},
      eprint={2108.00373},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Quick Links

Acknowledgment

SPEAR takes inspiration, builds upon, and uses pieces of code from several open source codebases. These include Snorkel, Snuba & Imply Loss. Also, SPEAR uses SUBMODLIB for subset selection, which is provided by DECILE too.

Team

SPEAR is created and maintained by Ayush, Abhishek, Vineeth, Harshad, Parth, Pankaj, Rishabh Iyer, and Ganesh Ramakrishnan. We look forward to have SPEAR more community driven. Please use it and contribute to it for your research, and feel free to use it for your commercial projects. We will add the major contributors here.

Publications

[1] Maheshwari, Ayush, et al. Data Programming using Semi-Supervision and Subset Selection, In Findings of ACL (Long Paper) 2021.

[2] Chatterjee, Oishik, Ganesh Ramakrishnan, and Sunita Sarawagi. Data Programming using Continuous and Quality-Guided Labeling Functions, In AAAI 2020.

[3] Sahay, Atul, et al. Rule augmented unsupervised constituency parsing, In Findings of ACL (Short Paper) 2021.

You might also like...
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Comments
  • Updated condition for Gold Label check and passing parameter name passing

    Updated condition for Gold Label check and passing parameter name passing

    1. Current Version of Spear fails when we are trying to do LF analysis without passing Gold Labels and their values is passed as None and is causing the following error as it is not checked

    Y = np.array([self.mapping[v] for v in Y]) TypeError: 'NoneType' object is not iterable

    1. Also their is a function call of confusion_matrix in lf_summary method, which requires the parameter name to execute properly else it fails with following error of argument passing

    confusion_matrix(Y, self.L[:, i], labels)[1:, 1:] for i in range(m) TypeError: confusion_matrix() takes 2 positional arguments but 3 were given

    The current code change fixes these two issues.

    opened by kasuba-badri-vishal 1
  • sms_jl.ipynb ISSUE with

    sms_jl.ipynb ISSUE with "Some Labelling Functions" code snippet

    I have changed the directory of previously glove_w2v.txt and then ran on my local pc and installed all reqd libraries but it shows an invalid literal for int() with base 10: 'import'

    I think its an issue with gensim but can;t seem to resolve it

    i'm attaching a picture down below :

    https://cdn.discordapp.com/attachments/754057588714373325/989172192078098442/unknown.png

    opened by Brshank 1
Releases(v1.0.0)
Owner
decile-team
DECILE: Data EffiCient machIne LEarning
decile-team
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023