SPEAR: Semi suPErvised dAta progRamming

Overview

PyPI docs license website GitHub repo size



Semi-Supervised Data Programming for Data Efficient Machine Learning

SPEAR is a library for data programming with semi-supervision. The package implements several recent data programming approaches including facility to programmatically label and build training data.

Pipeline

  • Design Labeling functions(LFs)
  • generate pickle file containing labels by passing raw data to LFs
  • Use one of the Label Aggregators(LA) to get final labels



SPEAR provides functionality such as

  • development of LFs/rules/heuristics for quick labeling
  • compare against several data programming approaches
  • compare against semi-supervised data programming approaches
  • use subset selection to make best use of the annotation efforts

Labelling Functions (LFs)

  • discrete LFs - Users can define LFs that return discrete labels
  • continuous LFs - return continuous scores/confidence to the labels assigned

Approaches Implemented

You can read this paper to know about below approaches

  • Only-L
  • Learning to Reweight
  • Posterior Regularization
  • Imply Loss
  • CAGE
  • Joint Learning

Data folder for SMS can be found here. This folder needs to be placed in the same directory as notebooks folder is in, to run the notebooks or examples.

Installation

Method 1

To install latest version of SPEAR package using PyPI:

pip install decile-spear

Method 2

SPEAR requires Python 3.6 or later. First install submodlib. Then install SPEAR:

git clone https://github.com/decile-team/spear.git
cd spear
pip install -r requirements/requirements.txt

Citation

@misc{abhishek2021spear,
      title={SPEAR : Semi-supervised Data Programming in Python}, 
      author={Guttu Sai Abhishek and Harshad Ingole and Parth Laturia and Vineeth Dorna and Ayush Maheshwari and Ganesh Ramakrishnan and Rishabh Iyer},
      year={2021},
      eprint={2108.00373},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Quick Links

Acknowledgment

SPEAR takes inspiration, builds upon, and uses pieces of code from several open source codebases. These include Snorkel, Snuba & Imply Loss. Also, SPEAR uses SUBMODLIB for subset selection, which is provided by DECILE too.

Team

SPEAR is created and maintained by Ayush, Abhishek, Vineeth, Harshad, Parth, Pankaj, Rishabh Iyer, and Ganesh Ramakrishnan. We look forward to have SPEAR more community driven. Please use it and contribute to it for your research, and feel free to use it for your commercial projects. We will add the major contributors here.

Publications

[1] Maheshwari, Ayush, et al. Data Programming using Semi-Supervision and Subset Selection, In Findings of ACL (Long Paper) 2021.

[2] Chatterjee, Oishik, Ganesh Ramakrishnan, and Sunita Sarawagi. Data Programming using Continuous and Quality-Guided Labeling Functions, In AAAI 2020.

[3] Sahay, Atul, et al. Rule augmented unsupervised constituency parsing, In Findings of ACL (Short Paper) 2021.

You might also like...
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Comments
  • Updated condition for Gold Label check and passing parameter name passing

    Updated condition for Gold Label check and passing parameter name passing

    1. Current Version of Spear fails when we are trying to do LF analysis without passing Gold Labels and their values is passed as None and is causing the following error as it is not checked

    Y = np.array([self.mapping[v] for v in Y]) TypeError: 'NoneType' object is not iterable

    1. Also their is a function call of confusion_matrix in lf_summary method, which requires the parameter name to execute properly else it fails with following error of argument passing

    confusion_matrix(Y, self.L[:, i], labels)[1:, 1:] for i in range(m) TypeError: confusion_matrix() takes 2 positional arguments but 3 were given

    The current code change fixes these two issues.

    opened by kasuba-badri-vishal 1
  • sms_jl.ipynb ISSUE with

    sms_jl.ipynb ISSUE with "Some Labelling Functions" code snippet

    I have changed the directory of previously glove_w2v.txt and then ran on my local pc and installed all reqd libraries but it shows an invalid literal for int() with base 10: 'import'

    I think its an issue with gensim but can;t seem to resolve it

    i'm attaching a picture down below :

    https://cdn.discordapp.com/attachments/754057588714373325/989172192078098442/unknown.png

    opened by Brshank 1
Releases(v1.0.0)
Owner
decile-team
DECILE: Data EffiCient machIne LEarning
decile-team
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022