DLFlow is a deep learning framework.

Overview

contributions license python

DLFlow - A Deep Learning WorkFlow

DLFlow概述

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

功能支持

配置驱动: DLFlow通过配置驱动,修改配置可以快速更换特征、模型超参数、任务流程等等,极大提高工作效率。

模块化结构: 任务和模型以插件形式存在,便于使用和开发,用户可以可以轻地将自定义任务和模型注册到框架内使用。

任务自组织: 通过内置的Workflow框架,根据任务的产出标记自动解决任务依赖,轻松构建深度学习pipeline。

最佳实践: 融入滴滴用户画像团队深度学习离线任务的最佳实践,有效应对离线生产中的多种问题。将Tensorflow和Spark进行合理结合,更适合离线深度学习任务。

快速开始

环境准备

首先请确保环境中已经安装和配置Hadoop和Spark,并设置好了基本的环境变量。

  • Tensorflow访问HDFS

为了能够使用让Tensorflow访问HDFS,需要确保如下环境变量生效:

# 确保libjvm.so被添加到LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${JAVA_HOME}/jre/lib/amd64/server

# 确保hadoop jars被添加到CLASSPATH
export CLASSPATH=${CLASSPATH}:$(hadoop classpath --glob)

关于Tensorflow访问HDFS更多内容请参见 TensorFlow on Hadoop

  • Spark读写TFReocrds
# Clone tensorflow/ecosystem项目
git clone https://github.com/tensorflow/ecosystem.git

cd ecosystem/spark/spark-tensorflow-connector/

# 构建spark-tensorflow-connector
mvn versions:set -DnewVersion=1.14.0
mvn clean install

项目构建后生成 target/spark-tensorflow-connector_2.11-1.14.0.jar,后续需要确保该jar被添加到 spark.jars 中。 关于Spark读写TFRecoreds更多内容请参见 spark-tensorflow-connector

安装

通过pip安装:

pip install dlflow

通过源代码安装:

git clone  https://github.com/didi/dlflow.git
cd dlflow
python setup.py install

使用

  • 配置文件

运行配置可参考 conf 目录中的配置。 关于配置详情请参考 配置说明

  • 以模块运行
python -m dlflow.main --config <CONFIGURATION FILE>.conf
  • 以脚本运行

确保python环境的 bin 目录已经被添加到环境变量 PATH

export PATH=$PATH:/usr/local/python/bin

之后通过如下命令运行

dlflow --config .conf

更详细的使用参见 使用说明

预定义任务

预定义任务 描述
Merge 特征融合任务,请参见 特征融合
Encode 解析原始特征,对特征进行编码和预处理,生成能够直接输入模型的特征
Train 模型训练任务
Evaluate 模型评估任务
Predict 模型预测任务,使用Spark进行分布式预测,具备处理大规模数据能力

手册目录

技术方案

DLFlow整体架构

整体架构

DLFLow pipeline

Pipeline

Contributing

欢迎使用并参与到本项目的建设中,详细内容请参见 Contribution Guide

License

DLFlow 基于Apache-2.0协议进行分发和使用,更多信息参见 LICENSE

Owner
DiDi
滴滴出行
DiDi
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022