DLFlow is a deep learning framework.

Overview

contributions license python

DLFlow - A Deep Learning WorkFlow

DLFlow概述

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

功能支持

配置驱动: DLFlow通过配置驱动,修改配置可以快速更换特征、模型超参数、任务流程等等,极大提高工作效率。

模块化结构: 任务和模型以插件形式存在,便于使用和开发,用户可以可以轻地将自定义任务和模型注册到框架内使用。

任务自组织: 通过内置的Workflow框架,根据任务的产出标记自动解决任务依赖,轻松构建深度学习pipeline。

最佳实践: 融入滴滴用户画像团队深度学习离线任务的最佳实践,有效应对离线生产中的多种问题。将Tensorflow和Spark进行合理结合,更适合离线深度学习任务。

快速开始

环境准备

首先请确保环境中已经安装和配置Hadoop和Spark,并设置好了基本的环境变量。

  • Tensorflow访问HDFS

为了能够使用让Tensorflow访问HDFS,需要确保如下环境变量生效:

# 确保libjvm.so被添加到LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${JAVA_HOME}/jre/lib/amd64/server

# 确保hadoop jars被添加到CLASSPATH
export CLASSPATH=${CLASSPATH}:$(hadoop classpath --glob)

关于Tensorflow访问HDFS更多内容请参见 TensorFlow on Hadoop

  • Spark读写TFReocrds
# Clone tensorflow/ecosystem项目
git clone https://github.com/tensorflow/ecosystem.git

cd ecosystem/spark/spark-tensorflow-connector/

# 构建spark-tensorflow-connector
mvn versions:set -DnewVersion=1.14.0
mvn clean install

项目构建后生成 target/spark-tensorflow-connector_2.11-1.14.0.jar,后续需要确保该jar被添加到 spark.jars 中。 关于Spark读写TFRecoreds更多内容请参见 spark-tensorflow-connector

安装

通过pip安装:

pip install dlflow

通过源代码安装:

git clone  https://github.com/didi/dlflow.git
cd dlflow
python setup.py install

使用

  • 配置文件

运行配置可参考 conf 目录中的配置。 关于配置详情请参考 配置说明

  • 以模块运行
python -m dlflow.main --config <CONFIGURATION FILE>.conf
  • 以脚本运行

确保python环境的 bin 目录已经被添加到环境变量 PATH

export PATH=$PATH:/usr/local/python/bin

之后通过如下命令运行

dlflow --config .conf

更详细的使用参见 使用说明

预定义任务

预定义任务 描述
Merge 特征融合任务,请参见 特征融合
Encode 解析原始特征,对特征进行编码和预处理,生成能够直接输入模型的特征
Train 模型训练任务
Evaluate 模型评估任务
Predict 模型预测任务,使用Spark进行分布式预测,具备处理大规模数据能力

手册目录

技术方案

DLFlow整体架构

整体架构

DLFLow pipeline

Pipeline

Contributing

欢迎使用并参与到本项目的建设中,详细内容请参见 Contribution Guide

License

DLFlow 基于Apache-2.0协议进行分发和使用,更多信息参见 LICENSE

Owner
DiDi
滴滴出行
DiDi
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Vikrant Deshpande 1 Nov 17, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022