Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Overview

Deep Web Scanner

Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach bestimmten Keywords gefiltert, aber in der Logdatei sind alle erreichten Websites drin.

Was findet man damit? Webcams, Nischen-Projekte und interessante Hobby-Projekte.

Die gleichen Ergebnisse können mit der Internetsuchmaschine Shodan oder teilweise auch mit Google erreicht werden.

Ip-Adressen

Die Eingabedatei ist eine CSV, die IP-Adressen aus Deutschland enthält. Das IP-Ranges sollten im Format: 1.1.1.1-2.2.2.2 sein. Die IP-Adressen stammen von diesem Projekt: https://github.com/sapics/ip-location-db

Vorraussetzung

  • Python 3.9

Wenn du auf Python 3.8 bist, kannst du Python 3.9 parallel installieren. Dann muss die gewünschte Version explizit angegeben werden. python3 bleibt weiterhin die Version 3.8:

sudo apt install python3.9
python3.9 -m pip install -r requirements.txt
python3.9 deep-web-scanner.py

Installation

Installiere die benötigten Pakete:

pip3 install -r requirements.txt

Starten

Startet den Scanner mit Standardwerten. Im Terminal und im richtigen Ordner ausführen:

python3 deep-web-scanner.py

Optionen:

  • -i input.txt: Eingabedatei
  • -o output.txt: Ausgabedatei
  • -indexof true: Logs index of files (default: False)

"Index of"

Diese Option zeigt verfügbare Dateien an: -indexof true:

python3 deep-web-scanner.py -indexof true

Suche

Über die Textdatei lässt sich schnell mit grepsuchen.

grep -i "nginx" deep-web.txt
Owner
Alex K.
<3 Hacker
Alex K.
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022