A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

Overview

RF Light House (rflh)

A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and beautiful interactive graphics.

background noise measurement 145 Mhz

WARNING: This repository is new and under construction, you will see some [TODO] & "(work in progress...)" sections/docs yet.

Motivation

This project born from a friend's challenge to measure the background noise impact on my 70cm satellite band noise floor, from a new 2/3/4G cellular tower that my ISP is setting up 50m away from my antennas and with direct sight.

Soon I realized the true potential of it and it get bigger and feature rich quickly.

Features

At the end of the execution you get:

  • A cvs file in the data folder with the resulting data
  • A png image in the data folder with the rose plot

Both files are named as follows: YYYMMDD_HHMM_device_freqMHz_BWkHz_stepo with the matching .csv and .png extensions. The runtime text on the console name the files created for easy parsing (unless you select the 'quiet' option)

For example a real fast scan showing the references to the img & cvs file for parsing:

310(307.5);-102,16941998017171
320(317.5);-101,77656601734243
330(327.5);-101,55990296468812
340(337.5);-101,583492037594
350(347.5);-102,01302571365707
Scan took 0:53
CSVFile: data/20220108_1357_rtl_145.17MHz_300kHz_10o.csv
Parking the rotor in the background
Reattached kernel driver
Dynamc range: 2.9333941135273136 dB, 10%: 0.2933394113527314
Min: -104.78663648956817, Max -101.26656355333539
ImgFile: data/20220108_1357_rtl_145.17MHz_300kHz_10o.png

You can stop the generation of the cvs and the image files if not needed, take a peek on the options.

Also if you are on a GUI enviroment you can issue the '-i' or '--interactive' switch and at the end of the sweep a interactive matplotlib graph will popup.

For a more detailed technical stuff on the features see OPTIONS_EXPLAINED.md (work in progress...)

Installation

As any script in python you will need some dependencies, default dev env is Ubuntu Linux 20.04 LTS. I'm working/testing a single portable file for linux/windows/mac but it's not ready yet (pyinstall stuff)

The installation of the utilities & python modules are covered in the Install document.

At the end of the we have some examples / use cases at the end of the OPTIONS_EXPLAINED.md document.

Author, contributions, code & donations

The author is Pavel Milanes Costa (CO7WT), you can join the team contributing with code fix, improvements, bug reports, ideas, etc. Use te "Issues" tab for that.

This software is Free Software under GPLv3, see LICENCE; free as in freedom.

If you find this piece of soft usefull and want to support the author with a tip, hardware donation or just a change for a coffee please contact me at [email protected] for instructions.

For money tips you can use my QvaPay donation page, thanks in advance!

You might also like...
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is established, which is named opensa (openspectrum analysis).

 Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

 Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model training, like the model indices and unexpected interrupts. Then you can do something in time for your work.

Comments
  • Configure the rotctld options from a config file instead of in a script

    Configure the rotctld options from a config file instead of in a script

    Now you have to configure the rotor in a separated script file that you need to configure and test.

    I'm thinking on a rotor.ini file with some default configs the users can un-comment and adapt, and that the own python script rise and release the rotctld process in the background.

    enhancement 
    opened by stdevPavelmc 2
  • Portable APP?

    Portable APP?

    Yes a portable app will be cool...

    But there are some limitations on the drivers on the linux/mac side, and unknown results on Linux.

    I will try to come with a solution like this, but at the moment only source distribution is possible.

    enhancement WIP 
    opened by stdevPavelmc 1
Releases(v0.0.3-alpha)
Owner
Pavel Milanes (CO7WT)
FLOSS lover, Sysadmin, Amateur Radio Operator, FLOSS developer, etc.
Pavel Milanes (CO7WT)
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022