The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

Related tags

Deep Learningsdr
Overview

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

This code corresponds to the reproducibility paper: "Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study" and all results gathered from the paper are generated using the code.

Environment setup:

  • This project is implemented and tested only for python version 3.6.12, other python versions are not tested and can not ensure the full run of the results.

First please install the required packages:

pip3 install -r requirements.txt

Query&Eval generation:

First please clone the TAR repository using the command

git clone https://github.com/CLEF-TAR/tar.git

The data that's been used include the following files:

For 2017:
tar/tree/master/2017-TAR/training/qrels/qrel_content_train
tar/tree/master/2017-TAR/testing/qrels/qrel_content_test.txt
Please cat these two files together to make 2017_full.txt

For 2018:
tar/tree/master/2018-TAR/Task2/Training/qrels/full.train.content.2018.qrels
tar/tree/master/2018-TAR/Task2/Testing/qrels/full.test.content.2018.qrels
Please cat these two files together to make 2018_full.txt

For 2019:
tar/tree/master/2019-TAR/Task2/Training/Intervention/qrels/full.train.int.content.2019.qrels
tar/tree/master/2019-TAR/Task2/Testing/Intervention/qrels/full.test.int.content.2019.qrels
Please cat these two files together to make 2019_full.txt, and also 2019_test.txt (note for 2019 these two will be the same)

Then you can generate query and evaluation files by:

For snigle:
python3 topic_query_generation.py --input_qrel qrel_file_for_training+testing --input_test_qrel qrel_file_for_testing --DATA_DIR output_dir

For multiple:
python3 topic_query_generation_multiple.py --input_qrel qrel_file_for_training+testing --input_test_qrel qrel_file_for_testing --DATA_DIR output_dir

Please note: you need to generate for each year and put it in a separate folder, not the overall one.

Collection generation:

For BOW collection generation, the following command is needed

python3 gather_all_pids.py --filenames 2017_full.txt+2018_full.txt+2019_full.txt --output_dir collection/pid_dir --chunks n
python3 collection_gathering.py --filename yourpidsfile --email [email protected] --output output_collection
python3 collection_processing.py --input_collection acquired_collection_file --output_collection processed_file(default is weighted1_bow.jsonl)

Then for BOC collection generation:

  • First ensure to check Quickumls to gather umls data.
  • Second ensure to register on NCBO to get api keys, and fill in these keys in ncbo_request_word.py
  • For BOC collection then, run the following command to generation boc_collection:
python3 ncbo_request_word.py --input_collection your_generated_bow_collection --num_workers for_multi_procesing --generated_collection output_dir_ncbo
cat output_dir/* > ncbo.tsv
python3 processing_uml.py --input_collection your_bow_collection --input_umls_dir your_output_umls_dir --num_workers for_multi_procesing
python3 processing_umls_word.py --input_collection your_generated_bow_collection --input_umls_dir your_output_umls_dir_from_last_step --output_file umls.tsv
python3 boc_extraction.py --input_collection bow_collection --input_ncbo_collection ncbo.tsv --input_umls_collection umls.tsv --output_collection processed_file(default is weighted1_boc.jsonl)

RQ1: Does the effectiveness of SDR generalise beyond the CLEF TAR 2017 dataset?

For RQ1, single seed driven results are acquired for clef tar 2017, 2018, 2019, for this please run the following command.

bash search.sh 2017_single_data_dir all
bash search.sh 2018_single_data_dir test
bash search.sh 2019_single_data_dir test

to get the run_file of all three years single seed run_file with all methods.

Then evaluation by:

bash evaluation_full.sh 2017_single_data_dir all
bash evaluation_full.sh 2018_single_data_dir test
bash evaluation_full.sh 2019_single_data_dir test

to print out evaluation measures and also save evaluation measurement files in the corresponding eval folder

RQ2: What is the impact of using multiple seed studies collectively on the effectiveness of SDR?

For RQ2, multiple seed driven results are acquired for clef tar 2017, 2018, 2019, for this please run the following command.

bash search_multiple.sh 2017_multiple_data_dir all
bash search_multiple.sh 2018_multiple_data_dir test
bash search_multiple.sh 2019_multiple_data_dir test

to get the run_file of all three years multiple seed run_file with all methods.

Then evaluation by:

bash evaluation_full.sh 2017_multiple_data_dir all
bash evaluation_full.sh 2018_multiple_data_dir test
bash evaluation_full.sh 2019_multiple_data_dir test

to print out evaluation measures and also save evaluation measurement files in the corresponding eval folder

RQ3: To what extent do seed studies impact the ranking stability of single- and multi-SDR?

For this question, we need to use the results acquired from the last two steps, in which we can generate variability graphs by using the following command:

python3 graph_making/distribution_graph.py --year 2017 --type oracle 
python3 graph_making/distribution_graph.py --year 2018 --type oracle 
python3 graph_making/distribution_graph.py --year 2019 --type oracle 

to get distribution graphs of the three years.

Generated run files:

Run files are generated and stored in here, feel free to download for verification or futher research needs.

Example:
run_files/2017/all: 2017 single seed results file
run_files/2017/multiple: 2017 multiple seed results file

Owner
ielab
The Information Engineering Lab
ielab
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023