Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

Overview

SA-AutoAug

Scale-aware Automatic Augmentation for Object Detection

Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia

[Paper] [BibTeX]


This project provides the implementation for the CVPR 2021 paper "Scale-aware Automatic Augmentation for Object Detection". Scale-aware AutoAug provides a new search space and search metric to find effective data agumentation policies for object detection. It is implemented on maskrcnn-benchmark and FCOS. Both search and training codes have been released. To facilitate more use, we re-implement the training code based on Detectron2.

Installation

For maskrcnn-benchmark code, please follow INSTALL.md for instruction.

For FCOS code, please follow INSTALL.md for instruction.

For Detectron2 code, please follow INSTALL.md for instruction.

Search

(You can skip this step and directly train on our searched policies.)

To search with 8 GPUs, run:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/search.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_search.yaml OURPUT_DIR /path/to/searchlog_dir

Since we finetune on an existing baseline model during search, a baseline model is needed. You can download this model for search, or you can use other Retinanet baseline model trained by yourself.

Training

To train the searched policies on maskrcnn-benchmark (FCOS)

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/CONFIG_FILE  OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_6x.yaml  OUTPUT_DIR models/retinanet_R-50-FPN_6x_SAAutoAug

To train the searched policies on detectron2

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/CONFIG_FILE OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/retinanet_R_50_FPN_6x.yaml OUTPUT_DIR output_retinanet_R_50_FPN_6x_SAAutoAug

Results

We provide the results on COCO val2017 set with pretrained models.

Based on maskrcnn-benchmark

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.8 Model
Faster R-CNN ResNet-101 44.2 Model
RetinaNet ResNet-50 41.4 Model
RetinaNet ResNet-101 42.8 Model
Mask R-CNN ResNet-50 42.8 Model
Mask R-CNN ResNet-101 45.3 Model

Based on FCOS

Method Backbone APbbox Download
FCOS ResNet-50 42.6 Model
FCOS ResNet-101 44.0 Model
ATSS ResNext-101-32x8d-dcnv2 48.5 Model
ATSS ResNext-101-32x8d-dcnv2 (1200 size) 49.6 Model

Based on Detectron2

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.9 Model - Metrics
Faster R-CNN ResNet-101 44.2 Model - Metrics
RetinaNet ResNet-50 40.8 Model - Metrics
RetinaNet ResNet-101 43.1 Model - Metrics
Mask R-CNN ResNet-50 42.9 Model - Metrics
Mask R-CNN ResNet-101 45.6 Model - Metrics

Citing SA-AutoAug

Consider cite SA-Autoaug in your publications if it helps your research.

@inproceedings{saautoaug,
  title={Scale-aware Automatic Augmentation for Object Detection},
  author={Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Acknowledgments

This training code of this project is built on maskrcnn-benchmark, Detectron2, FCOS, and ATSS. The search code of this project is modified from DetNAS. Some augmentation code and settings follow AutoAug-Det. We thanks a lot for the authors of these projects.

Note that:

(1) We also provides script files for search and training in maskrcnn-benchmark, FCOS, and, detectron2.

(2) Any issues or pull requests on this project are welcome. In addition, if you meet problems when applying the augmentations to other datasets or codebase, feel free to contact Yukang Chen ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023