RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Overview

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Real tiem detection

Real-time detection performance.

This repo contains the code and extra simulation results supporting the paper 'Robust Moving Target Defence Against False Data Injection Attacks in Power Grids' by Wangkun Xu, Imad M. Jaimoukha, and Fei Teng. The authors are with the Control and Power Group, Dept. of EEE, Imperial College London.

Note: The current version is incomplete, detailed algorithms are coming soon.

Installation

This project requires Python packages to run. The testing OS is Windows.

  1. Install the latest version Anaconda to your OS.
  2. Create a new env in Anaconda Prompt by conda create -n robust-mtd python=3.8.12.
  3. Direct to the env by conda activate robust-mtd.
  4. Install all requirements by conda install --file requirements.txt.
  5. Download everything to your PC in your_path and redirect to your path by cd your_path.

Packages

PYPOWER

POPOWER is a power flow and optimal power flow solver. It is part of MATPOWER to the Python programming language. We will use PYPOWER as the environment to build the system matrices, implement attacks and implement the MTD.

SciPy

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. In specific, we use the open source optimization solve 'Sequential Least Squares Programming (SLSQP)' to solve the nonlinear programming problem.

Running and Testing

  1. Change the test system, algorithm, and constraints, e.g. change everything in input_setting.py under the line:

    """
    EDIT HERE : CHANGE YOUR SETTINGS HERE!
    """ 
    

    Do not change elsewhere!

    The current support tests include:

    • case: IEEE case-6ww, case-14, and case-57;
    • MTD perturbation ratio: $\tau=0.2,0.3,0.4,0.5$;
    • Placement of D-FACTS devices: All, outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k while covering all necessary buses), and the outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k);
    • hidden_MTD: True or False. Normally, the robust algorithm with complete MTD configuration is not tested with the hiddenness;
    • column_constraint: True or False. If True, the constraint in principle 2 is added.

    You can also change:

    • The measurement noise covariance matrix;
    • The FPR of BDD;
    • The attack strength under test;

    The code is flexible. You can also add your own system as long as it uses PYPOWER or MATPOWER to formulate.

Extra Simulation Result

Owner
Ph.D. student at Control and Power Group, Imperial College London.
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022