Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

Overview

EDSR modelling

A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repository contains all code necessary to recreate the results in the paper [1]. The images that are used in various parts of the code are found on Zenodo at DOI: 10.5281/zenodo.5542624. There is previous experimental and modelling work performed in the papers of [2,3].

Workflow Summary of the workflow, flowing from left to right. First, the EDSR network is trained & tested on paired LR and HR data to produce SR data which emulates the HR data. Second, the trained EDSR is applied to the whole core LR data to generate a whole core SR image. A pore-network model (PNM) is then used to generate 3D continuum properties at REV scale from the post-processed image. Finally, the 3D digital model is validated through continuum modelling (CM) of the muiltiphase flow experiments.

The workflow image above summarises the general approach. We list the detailed steps in the workflow below, linking to specific files and folders where necesary.

1. Generating LR, Cubic and HR data

The low resolution (LR) and high resolution (HR) can be downloaded from Zenodo at DOI: 10.5281/zenodo.5542624. The following code can then be run:

  • A0_0_0_Generate_LR_bicubic.m This code generates Cubic interpolation images from LR images, artifically decreasing the pixel size and interpolating, for use in comparison to HR and SR images later.
  • A0_0_1_Generate_filtered_images_LR_HR.m. This code performs non-local means filtering of the LR, cubic and HR images, given the settings in the paper [1].

2. EDSR network training

The 3d EDSR (Enhanced Deep Super Resolution) convolution neural network used in this work is based on the implementation of the CVPR2017 workshop Paper: "Enhanced Deep Residual Networks for Single Image Super-Resolution" (https://arxiv.org/pdf/1707.02921.pdf) using PyTorch.

The folder 3D_EDSR contains the EDSR network training & testing code. The code is written in Python, and tested in the following environment:

  • Windows 10
  • Python 3.7.4
  • Pytorch 1.8.1
  • cuda 11.2
  • cudnn 8.1.0

The Jupyter notebook Train_review.ipynb, contains cells with the individual .py codes copied in to make one continuous workflow that can be run for EDSR training and validation. In this file, and those listed below, the LR and HR data used for training should be stored in the top level of 3D_EDSR, respectively, as:

  • Core1_Subvol1_LR.tif
  • Core1_Subvol1_HR.tif

To generate suitable training images (sub-slices of the full data above), the following code can be run:

  • train_image_generator.py. This generates LR and registered x3 HR sub-images for EDSR training, sub-image sizes are of flexible size, dependent on the pore-structure. The LR/HR sub-images are separated into two different folders LR and HR

The EDSR model can then be trained on the LR and HR sub-sampled data via:

  • main_edsr.py. This trains the EDSR network on the LR/HR data. It requires the code load_data.py, which is the sub-image loader for EDSR training. It also requires the 3D EDSR model structure code edsr_x3_3d.py. The code then saves the trained network as 3D_EDSR.pt. The version supplied here is that trained and used in the paper.

To view the training loss performance, the data can be output and saved to .txt files. The data can then be used in:

3. EDSR network verification

The trained EDSR network at 3D_EDSR.pt can be verified by generating SR images from a different LR image to that which was used in training. Here we use the second subvolume from core 1, found on Zenodo at DOI: 10.5281/zenodo.5542624:

  • Core1_Subvol2_LR.tif

The trained EDSR model can then be run on the LR data using:

  • validation_image_generator.py. This creates input validation LR images. The validation LR images have large size in x,y axes and small size in z axis to reduce computational cost.
  • main_edsr_validation.py. The validation LR images are used with the trained EDSR model to generate 3D SR subimages. These can be saved in the folder SR_subdata as the Jupyter notebook Train_review.ipynb does. The SR subimages are then stacked to form a whole 3D SR image.

Following the generation of suitable verification images, various metrics can be calculated from the images to judge performance against the true HR data:

Following the generation of these metrics, several plotting codes can be run to compare LR, Cubic, HR and SR results:

4. Continuum modelling and validation

After the EDSR images have been verified using the image metrics and pore-network model simulations, the EDSR network can be used to generate continuum scale models, for validation with experimental results. We compare the simulations using the continuum models to the accompanying experimental dataset in [2]. First, the following codes are run on each subvolume of the whole core images, as per the verification section:

The subvolume (and whole-core) images can be found on the Digital Rocks Portal and on the BGS National Geoscience Data Centre, respectively. This will result in SR images (with the pre-exising LR) of each subvolume in both cores 1 and 2. After this, pore-network modelling can be performed using:

The whole core results can then be compiled into a single dataset .mat file using:

To visualise the petrophysical properties for the whole core, the following code can be run:

Continuum models can then be generated using the 3D petrophysical properties. We generate continuum properties for the multiphase flow simulator CMG IMEX. The simulator reads in .dat files which use .inc files of the 3D petrophsical properties to perform continuum scale immiscible drainage multiphase flow simulations, at fixed fractional flow of decane and brine. The simulations run until steady-state, and the results can be compared to the experiments on a 1:1 basis. The following codes generate, and run the files in CMG IMEX (has to be installed seperately):

Example CMG IMEX simulation files, which are generated from these codes, are given for core 1 in the folder CMG_IMEX_files

The continuum simulation outputs can be compared to the experimental results, namely 3D saturations and pressures in the form of absolute and relative permeability. The whole core results from our simulations are summarised in the file Whole_core_results_exp_sim.xlsx along with experimental results. The following code can be run:

  • A1_1_2_Plot_IMEX_continuum_results.m. This plots graphs of the continuum model results from above in terms of 3D saturations and pressure compared to the experimental results. The experimental data is stored in Exp_data.

5. Extra Folders

  • Functions. This contains functions used in some of the .m files above.
  • media. This folder contains the workflow image.

6. References

  1. Jackson, S.J, Niu, Y., Manoorkar, S., Mostaghimi, P. and Armstrong, R.T. 2021. Deep learning of multi-resolution X-Ray micro-CT images for multi-scale modelling.
  2. Jackson, S.J., Lin, Q. and Krevor, S. 2020. Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow from the Pore to Continuum Scale. Water Resources Research, 56(6), e2019WR026396
  3. Zahasky, C., Jackson, S.J., Lin, Q., and Krevor, S. 2020. Pore network model predictions of Darcy‐scale multiphase flow heterogeneity validated by experiments. Water Resources Research, 56(6), e e2019WR026708.
Owner
Samuel Jackson
Research Scientist @CSIRO Energy
Samuel Jackson
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022