Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Related tags

Deep LearningArTIST
Overview

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021)

Pytorch implementation of the ArTIST motion model. In this repo, there are

  • Training script for the Moving Agent network
  • Training script for the ArTIST motion model
  • Demo script for Inferring the likelihood of current observations (detections)
  • Demo script for Inpainting the missing observation/detections

Demo 1: Likelihood estimation of observation

Run:

python3 demo_scoring.py

This will generate the output in the temp/ar/log_p directory, look like this: scoring demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of clusters.

The model then evaluates the log-likelihood (lower the better) of all detections as the continuation of the observed sequence.

Demo 2: Sequence inpainting

Run:

python3 demo_inpainting.py

This will generate the multiple plauusible continuations of an observed motion, stored in the temp/ar/inpainting directory. One example looks like this: inpainting demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of samples we wish to generate.

For each generated future sequence, it computes the IoU between the last generated bounding box and the last groundtruth bounding box, as well as the mean IoU for the entire generated sequence and the groundtruth sequence.

Utilities

In this repo, there are a number of scripts to generate the required data to train/evaluate ArTIST.

  • prepare_data: Given the annotations of a dataset (e.g., MOT17), it extracts the motion sequences as well as the IDs of the social tracklets living the life span of the corresponding sequence, and stores it as a dictionary. If there are multiple tracking datasets that you wish to combine, you can use the merge_datasets() function inside this script.
  • clustering: Given the output dictionary of prepare_data script, this script performs the K-Means clustering and stores the centroids which are then used in the ArTIST model.
  • dataloader_ae and dataloader_ar: Given the post-processes version of the dataset dictionary (which can be done by running the post_process script), these two scripts define the dataloaders for training the MA-Net and ArTIST. Note that the dataloader of ArTIST uses the MA-Net to compute the social information. This can also be done jointly in an end-to-end fashion, which we observed almost no difference.
  • create_demo_test_subset: In order to run the demo scripts, you need to run this script. However, the demo test subset has been produced and stored in data/demo_test_subset.npy.

Data

You can download the required data from the Release and put it in data/ directory.

Citation

If you find this work useful in your own research, please consider citing:

@inproceedings{saleh2021probabilistic,
author={Saleh, Fatemeh and Aliakbarian, Sadegh and Rezatofighi, Hamid and Salzmann, Mathieu and Gould, Stephen},
title = {Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year = {2021}
}
You might also like...
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

 A New Approach to Overgenerating and Scoring Abstractive Summaries
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

The code for our paper
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
Comments
  • Re-creating paper results

    Re-creating paper results

    Did you use implement the ArTIST paradigm in the SORT algorithm to achieve the results in your paper? If so, do you have an example of integrating the ArTIST motion model with SORT? I am trying to re-create the results of the paper.

    How do I re-create the results you obtained in your paper?

    opened by vineetrshenoy 1
  • dataloader.py: shape mismatch

    dataloader.py: shape mismatch

    when i use dataloader.py to load the data, here comes a error:could not broadcast input array from shape (2) into shape (4) in line 33 of dataloader.py, I wonder how to fix the bug and what is the data format in data/postp_combined_path_mot_train.npy, thanks for your help.

    opened by guileihu 0
Releases(data-release)
Owner
Fatemeh
Fatemeh
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022