Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Overview

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

This repository contains the code to reproduce the results from the paper. Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code or paper useful, please consider citing

@inproceedings{NeuralPull,
    title = {Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces},
    author = {Baorui, Ma and Zhizhong, Han and Yu-shen, Liu and Matthias, Zwicker},
    booktitle = {International Conference on Machine Learning (ICML)},
    year = {2021}
}

Surface Reconstruction Demo

Single Image Reconstruction Demo

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called tensorflow1 using

conda env create -f NeuralPull.yaml
conda activate tensorflow1

Next, for evaluation of the models,compile the extension modules, which are provided by Occupancy Networks. You can do this via

python setup.py build_ext --inplace

To compile the dmc extension, you have to have a cuda enabled device set up. If you experience any errors, you can simply comment out the dmc_* dependencies in setup.py. You should then also comment out the dmc imports in im2mesh/config.py.

Dataset and pretrained model

  1. You can download our preprocessed data and pretrained model.Included in the link:

    --Our pre-train model on ABC and FAMOUS dataset.

    --Preprocessing data of ABC and FAMOUS(sample points and ground truth points).

    --Our reconstruction results.

  2. To make it easier for you to test the code, we have prepared exmaple data in the exmaple_data folder.

Building the dataset

Alternatively, you can also preprocess the dataset yourself. To this end, you have to follow the following steps:

  • Put your own pointcloud files in 'input_dir' folder, each pointcloud file in a separate .xyz.npy file.
  • Set an empty folder 'out_dir' to place the processed data, note, the folder need to be empty, because this folder will be deleted before the program runs.

You are now ready to build the dataset:

python sample_query_point --out_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --CUDA 0 --dataset other --input_dir ./data/abc_noisefree/04_pts/ 

Training

You can train a new network from scratch, run

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --class_name plane
  1. Train the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset other

Evaluation

For evaluation of the models and generation meshes using a trained model, use

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --class_name plane
  1. Evaluation the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset other

Script Parameters Explanation

Parameters Description
train train or test a network.
data_dir preprocessed data.
out_dir store network parameters when training or to load pretrained network parameters when testing.
class_idx the class to train or test when using shapenet dataset, other dataset, default.
class_name the class to train or test when using shapenet dataset, other dataset, default.
dataset shapenet,famous,ABC or other(your dataset)

Pytorch Implementation of Neural-Pull

Notably, the code in Pytorch implementation is not released by the official lab, it is achieved by @wzxshgz123's diligent work. His intention is only to provide references to researchers who are interested in Pytorch implementation of Neural-Pull. There is no doubt that his unconditional dedication should be appreciated.

A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
22 Oct 14, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022