OpenLT: An open-source project for long-tail classification

Related tags

Deep LearningOpenLT
Overview

OpenLT: An open-source project for long-tail classification

Supported Methods for Long-tailed Recognition:

Reproduce Results

Here we simply show part of results to prove that our implementation is reasonable.

ImageNet-LT

Method Backbone Reported Result Our Implementation
CE ResNet-10 34.8 35.3
Decouple-cRT ResNet-10 41.8 41.8
Decouple-LWS ResNet-10 41.4 41.6
BalanceSoftmax ResNet-10 41.8 41.4
CE ResNet-50 41.6 43.2
LDAM-DRW* ResNet-50 48.8 51.2
Decouple-cRT ResNet-50 47.3 48.7
Decouple-LWS ResNet-50 47.7 49.3

CIFAR100-LT (Imbalance Ratio 100)

${\dagger}$ means the reported results are copied from LADE

Method Datatset Reported Result Our Implementation
CE CIFAR100-LT 39.1 40.3
LDAM-DRW CIFAR100-LT 42.04 42.9
LogitAdjust CIFAR100-LT 43.89 45.3
BalanceSoftmax$^{\dagger}$ CIFAR100-LT 45.1 46.47

Requirement

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── Tiny_ImageNet_LT_train.txt (Optional)
│   ├── Tiny_ImageNet_LT_val.txt (Optional)
│   ├── Tiny_ImageNet_LT_test.txt (Optional)
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

Training and Evaluation Instructions

Single Stage Training

python train.py -c path_to_config_file

For example, to train a model with LDAM Loss on CIFAR-100-LT:

python train.py -c configs/CIFAR-100/LDAMLoss.json

Decouple Training (Stage-2)

python train.py -c path_to_config_file -crt path_to_stage_one_checkpoints

For example, to train a model with LWS classifier on ImageNet-LT:

python train.py -c configs/ImageNet-LT/R50_LWS.json -lws path_to_stage_one_checkpoints

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

resume

python train.py -c path_to_config_file -r path_to_resume_checkpoint

Please see the pytorch template that we use for additional more general usages of this project

FP16 Training

If you set fp16 in utils/util.py, it will enable fp16 training. However, this is susceptible to change (and may not work on all settings or models) and please double check if you are using it since we don't plan to focus on this part if you request help. Only some models work (see autograd in the code). We do not plan to provide support on this because it is not within our focus (just for faster training and less memory requirement). In our experiments, the use of FP16 training does not reduce the accuracy of the model, regardless of whether it is a small dataset (CIFAR-LT) or a large dataset(ImageNet_LT, iNaturalist).

Visualization

We use tensorboard as a visualization tool, and provide the accuracy changes of each class and different groups during the training process:

tensorboard --logdir path_to_dir

We also provide the simple code to visualize feature distribution using t-SNE and calibration using the reliability diagrams, please check the parameters in plot_tsne.py and plot_ece.py, and then run:

python plot_tsne.py

or

python plot_ece.py

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This project is mainly based on RIDE's code base. In the process of reproducing and organizing the code, it also refers to some other excellent code repositories, such as decouple and LDAM.

Owner
Ming Li
Ming Li
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022