A new test set for ImageNet

Overview

ImageNetV2

The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and working with ImageNetV2. The actual test sets are stored in a separate location.

ImageNetV2 contains three test sets with 10,000 new images each. Importantly, these test sets were sampled after a decade of progress on the original ImageNet dataset. This makes the new test data independent of existing models and guarantees that the accuracy scores are not affected by adaptive overfitting. We designed the data collection process for ImageNetV2 so that the resulting distribution is as similar as possible to the original ImageNet dataset. Our paper "Do ImageNet Classifiers Generalize to ImageNet?" describes ImageNetV2 and associated experiments in detail.

In addition to the three test sets, we also release our pool of candidate images from which the test sets were assembled. Each image comes with rich metadata such as the corresponding Flickr search queries or the annotations from MTurk workers.

The aforementioned paper also describes CIFAR-10.1, a new test set for CIFAR-10. It can be found in the following repository: https://github.com/modestyachts/CIFAR-10.1

Using the Dataset

Before explaining how the code in this repository was used to assemble ImageNetV2, we first describe how to load our new test sets.

Test Set Versions

There are currently three test sets in ImageNetV2:

  • Threshold0.7 was built by sampling ten images for each class among the candidates with selection frequency at least 0.7.

  • MatchedFrequency was sampled to match the MTurk selection frequency distribution of the original ImageNet validation set for each class.

  • TopImages contains the ten images with highest selection frequency in our candidate pool for each class.

In our code, we adopt the following naming convention: Each test set is identified with a string of the form

imagenetv2-<test-set-letter>-<revision-number>

for instance, imagenetv2-b-31. The Threshold0.7, MatchedFrequency, and TopImages have test set letters a, b, and c, respectively. The current revision numbers for the test sets are imagenetv2-a-44, imagenetv2-b-33, imagenetv2-c-12. We refer to our paper for a detailed description of these test sets and the review process underlying the different test set revisions.

Loading a Test Set

You can download the test sets from the following url: http://imagenetv2public.s3-website-us-west-2.amazonaws.com/. There is a link for each individual dataset and the ImageNet datasets must be decompressed before use.

To load the dataset, you can use the ImageFolder class in PyTorch on the extracted folder.

For instance, the following code loads the MatchedFrequency dataset:

from torchvision import datasets
datasets.ImageFolder(root='imagenetv2-matched-frequency')

Dataset Creation Pipeline

The dataset creation process has several stages outlined below. We describe the process here at a high level. If you have questions about any individual steps, please contact Rebecca Roelofs ([email protected]) and Ludwig Schmidt ([email protected]).

1. Downloading images from Flickr

In the first stage, we collected candidate images from the Flickr image hosting service. This requires a Flickr API key.

We ran the following command to search Flickr for images for a fixed list of wnids:

python flickr_search.py "../data/flickr_api_keys.json" \
                        --wnids "{wnid_list.json}" \
                        --max_images 200 \
                        --max_date_taken "2013-07-11"\
                        --max_date_uploaded "2013-07-11"\
                        --min_date_taken "2012-07-11"\
                        --min_date_uploaded "2012-07-11" 

We refer to the paper for more details on which Flickr search parameters we used to complete our candidate pool.

The script outputs search result metadata, including the Flickr URLs returned for each query. This search result metadata is written to /data/search_results/.

We then stored the images to an Amazon S3 bucket using

python download_images_from_flickr.py ../data/search_results/{search_result.json} --batch --parallel

2. Create HITs

Similar to the original ImageNet dataset, we used Amazon Mechanical Turk (MTurk) to filter our pool of candidates. The main unit of work on MTurk is a HIT (Human Intelligence Tasks), which in our case consists of 48 images with a target class. The format of our HITs was derived from the original ImageNet HITs.

To submit a HIT, we performed the following steps. They require a configured MTurk account.

  1. Encrypt all image URLs. This is necessary so that MTurk workers cannot identify whether an image is from the original validation set or our candidate pool by the source URL. python encrypt_copy_objects.py imagenet2candidates_mturk --strip_string ".jpg" --pywren
  2. Run the image consistency check. This checks that all of the new candidate images have been stored to S3 and have encrypted URLs. python image_consistency_check.py
  3. Generate hit candidates. This outputs a list of candidates to data/hit_candidates python generate_hit_candidates.py --num_wnids 1000
  4. Submit live HITs to MTurk. bash make_hits_live.sh sample_args_10.json <username> <latest_hit_candidate_file>
  5. Wait for prompt, and check if HTML file in the code/ directory looks correct.
  6. Type in the word LIVE to confirm submitting the HITs to MTurk (this costs money).

The HIT metadata created by make_hits_live.sh is stored in data/mturk/hit_data_live/.

After a set of HITs was submitted, you can check their progress using python3 mturk.py show_hit_progress --live --hit_file ../data/mturk/hit_data_live/{hit.json}

Additionally, we occasionally used the Jupyter notebook inspect_hit.ipynb to visually examine the HITs we created. The code for this notebook is stored in inspect_hit_notebook_code.py.

3. Remove near duplicates

Next, we removed near-duplicates from our candidate pool. We checked for near-duplicates both within our new test set and between our new test set and the original ImageNet dataset.

To find near-duplicates, we computed the 30 nearest neighbors for each candidate image in three different metrics: l2 distance on raw pixels, l2 distance on features extracted from a pre-trained VGG model (fc7), and SSIM (structural similarity).

The fc7 metric requires that each image is featurized using the same pre-trained VGG model. The scripts featurize.py, feaurize_test.py and featurize_candidates.py were used to perform the fc7 featurization.

Next, we computed the nearest neighbors for each image. Each metric has a different starting script:

  • run_near_duplicate_checker_dssim.py
  • run_near_duplicate_checker_l2.py
  • run_near_duplicate_checker_fc7.py

All three scripts use near_duplicate_checker.py for the underlying computation.

The script test_near_duplicate_checker.sh was used to run the unit tests for the near duplicate checker contained in test_near_duplicate_checker.py.

Finally, we manually reviewed the nearest neighbor pairs using the notebook review_near_duplicates.ipynb. The file review_near_duplicates_notebook_code.py contains the code for this notebook. The review output is saved in data/metadata/nearest_neighbor_reviews_v2.json. All near duplicates that we found are saved in data/metadata/near_duplicates.json.

4. Sample Dataset

After we created a labeled candidate pool, we sampled the new test sets.

We use a separate bash script to sample each version of the dataset, i.e sample_dataset_type_{a}.sh. Each script calls sample_dataset.py and initialize_dataset_review.py with the correct arguments. The file dataset_sampling.py contains helper functions for the sampling procedure.

5. Review Final Dataset

For quality control, we added a final reviewing step to our dataset creation pipeline.

  • initialize_dataset_review.py initializes the metadata needed for each dataset review round.

  • final_dataset_inspection.ipynb is used to manually review dataset versions.

  • final_dataset_inspection_notebook_code.py contains the code needed for the final_dataset_inspection.ipynb notebook.

  • review_server.py is the review server used for additional cleaning of the candidate pool. The review server starts a web UI that allows one to browse all candidate images for a particular class. In addition, a user can easily flag images that are problematic or near duplicates.

The review server can use local, downloaded images if started with the flag python3 review_server.py --use_local_images. In addition, you also need to launch a separate static file server for serving the images. There is a script in data for starting the static file server ./start_file_server.sh.

The local images can be downloaded using

  • download_all_candidate_images_to_cache.py
  • download_dataset_images.py

Data classes

Our code base contains a set of data classes for working with various aspects of ImageNetV2.

  • imagenet.py: This file contains the ImageNetData class that provides metadata about ImageNet (a list of classes, etc.) and functionality for loading images in the original ImageNet dataset. The scripts generate_imagenet_metadata_pickle.py are used to assemble generate_class_info_file.py some of the metadata in the ImageNetData class.

  • candidate_data.py contains the CandidateData class that provides easy access to all candidate images in ImageNetV2 (both image data and metadata). The metadata file used in this class comes from generate_candidate_metadata_pickle.py.

  • image_loader.py provides a unified interface to loading image data from either ImageNet or ImageNetV2.

  • mturk_data.py provides the MTurkData class for accessing the results from our MTurk HITs. The data used by this class is assembled via generate_mturk_data_pickle.

  • near_duplicate_data.py loads and processes the information about near-duplicates in ImageNetV2. Some of the metadata is prepared with generate_review_thresholds_pickle.py.

  • dataset_cache.py allows easy loading of our various test set revisions.

  • prediction_data.py provides functionality for loading the predictions of various classification models on our three test sets.

The functionality provided by each data class is documented via examples in the notebooks folder of this repository.

Evaluation Pipeline

Finally, we describe our evaluation pipeline for the PyTorch models. The main file is eval.py, which can be invoked as follows:

python eval.py --dataset $DATASET --models $MODELS

where $DATASET is one of

  • imagenet-validation-original (the original validation set)
  • imagenetv2-b-33 (our new MatchedFrequency test set)
  • imagenetv2-a-44 (our new Threshold.7 test set)
  • imagenetv2-c-12 (our new TopImages test set).

The $MODELS parameter is a comma-separated list of model names in the torchvision or Cadene/pretrained-models.pytorch repositories. Alternatively, $MODELS can also be all, in which case all models are evaluated.

License

Unless noted otherwise in individual files, the code in this repository is released under the MIT license (see the LICENSE file). The LICENSE file does not apply to the actual image data. The images come from Flickr which provides corresponding license information. They can be used the same way as the original ImageNet dataset.

GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022