Naszilla is a Python library for neural architecture search (NAS)

Overview

License

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your own NAS algorithm, and then easily compare it with eleven algorithms across three benchmarks.

This repository contains the official code for the following three papers:

Paper README Blog Post
A Study on Encodings for Neural Architecture Search encodings.md Blog Post
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search bananas.md Blog Post
Exploring the Loss Landscape in Neural Architecture Search local_search.md Blog Post

Installation

Clone this repository and install its requirements (which includes nasbench, nas-bench-201, and nasbench301). It may take a few minutes.

git clone https://github.com/naszilla/naszilla
cd naszilla
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

You might need to replace line 32 of src/nasbench301/surrogate_models/surrogate_models.py with a new path to the configspace file:

self.config_loader = utils.ConfigLoader(os.path.expanduser('~/naszilla/src/nasbench301/configspace.json'))

Next, download the nas benchmark datasets (either with the terminal commands below, or from their respective websites (nasbench, nas-bench-201, and nasbench301). The versions recommended for use with naszilla are nasbench_only108.tfrecord, NAS-Bench-201-v1_0-e61699.pth, and nasbench301_models_v0.9.zip. If you use a different version, you might need to edit some of the naszilla code.

# these files are 0.5GB, 2.1GB, and 1.6GB, respectively
wget https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord
wget https://ndownloader.figshare.com/files/25506206?private_link=7d47bf57803227af4909 -O NAS-Bench-201-v1_0-e61699.pth
wget https://ndownloader.figshare.com/files/24693026 -O nasbench301_models_v0.9.zip
unzip nasbench301_models_v0.9.zip

Place the three downloaded benchmark data files in ~/nas_benchmark_datasets (or choose another directory and edit line 15 of naszilla/nas_benchmarks.py accordingly).

Now you have successfully installed all of the requirements to run eleven NAS algorithms on three benchmark search spaces!

Test Installation

You can test the installation by running these commands:

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_101 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_201 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_301 --algo_params all_algos --queries 30 --trials 1

These experiments should finish running within a few minutes.

Run NAS experiments on NASBench-101/201/301 search spaces

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_201 --dataset cifar100 --queries 100 --trials 100

This will test several NAS algorithms against each other on the NASBench-201 search space. Note that NASBench-201 allows you to specify one of three datasets: cifar10, cifar100, or imagenet. To customize your experiment, open naszilla/params.py. Here, you can change the algorithms and their hyperparameters. For details on running specific methods, see these docs.

Contributions

Contributions are welcome!

Reproducibility

If you have any questions about reproducing an experiment, please open an issue or email [email protected].

Citation

Please cite our papers if you use code from this repo:

@inproceedings{white2020study,
  title={A Study on Encodings for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Nolen, Sam and Savani, Yash},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}

@inproceedings{white2021bananas,
  title={BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Savani, Yash},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

@inproceedings{white2021exploring,
  title={Exploring the Loss Landscape in Neural Architecture Search},
  author={White, Colin and Nolen, Sam and Savani, Yash},
  booktitle={Uncertainty in Artificial Intelligence},
  organization={PMLR},
  year={2021}
}

Contents

This repo contains encodings for neural architecture search, a variety of NAS methods (including BANANAS, a neural predictor Bayesian optimization method, and local search for NAS), and an easy interface for using multiple NAS benchmarks.

Encodings:

encodings

BANANAS:

adj_train adj_test path_train path_test

Local search:

local_search

Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. đź“– Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021