Diverse Image Generation via Self-Conditioned GANs

Overview

Diverse Image Generation via Self-Conditioned GANs

Project | Paper

Diverse Image Generation via Self-Conditioned GANs
Steven Liu, Tongzhou Wang, David Bau, Jun-Yan Zhu, Antonio Torralba
MIT, Adobe Research
in CVPR 2020.

Teaser

Our proposed self-conditioned GAN model learns to perform clustering and image synthesis simultaneously. The model training requires no manual annotation of object classes. Here, we visualize several discovered clusters for both Places365 (top) and ImageNet (bottom). For each cluster, we show both real images and the generated samples conditioned on the cluster index.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/stevliu/self-conditioned-gan.git
cd self-conditioned-gan
  • Install the dependencies
conda create --name selfcondgan python=3.6
conda activate selfcondgan
conda install --file requirements.txt
conda install -c conda-forge tensorboardx

Training and Evaluation

  • Train a model on CIFAR:
python train.py configs/cifar/selfcondgan.yaml
  • Visualize samples and inferred clusters:
python visualize_clusters.py configs/cifar/selfcondgan.yaml --show_clusters

The samples and clusters will be saved to output/cifar/selfcondgan/clusters. If this directory lies on an Apache server, you can open the URL to output/cifar/selfcondgan/clusters/+lightbox.html in the browser and visualize all samples and clusters in one webpage.

  • Evaluate the model's FID: You will need to first gather a set of ground truth train set images to compute metrics against.
python utils/get_gt_imgs.py --cifar
python metrics.py configs/cifar/selfcondgan.yaml --fid --every -1

You can also evaluate with other metrics by appending additional flags, such as Inception Score (--inception), the number of covered modes + reverse-KL divergence (--modes), and cluster metrics (--cluster_metrics).

Pretrained Models

You can load and evaluate pretrained models on ImageNet and Places. If you have access to ImageNet or Places directories, first fill in paths to your ImageNet and/or Places dataset directories in configs/imagenet/default.yaml and configs/places/default.yaml respectively. You can use the following config files with the evaluation scripts, and the code will automatically download the appropriate models.

configs/pretrained/imagenet/selfcondgan.yaml
configs/pretrained/places/selfcondgan.yaml

configs/pretrained/imagenet/conditional.yaml
configs/pretrained/places/conditional.yaml

configs/pretrained/imagenet/baseline.yaml
configs/pretrained/places/baseline.yaml

Evaluation

Visualizations

To visualize generated samples and inferred clusters, run

python visualize_clusters.py config-file

You can set the flag --show_clusters to also visualize the real inferred clusters, but this requires that you have a path to training set images.

Metrics

To obtain generation metrics, fill in paths to your ImageNet or Places dataset directories in utils/get_gt_imgs.py and then run

python utils/get_gt_imgs.py --imagenet --places

to precompute batches of GT images for FID/FSD evaluation.

Then, you can use

python metrics.py config-file

with the appropriate flags compute the FID (--fid), FSD (--fsd), IS (--inception), number of modes covered/ reverse-KL divergence (--modes) and clustering metrics (--cluster_metrics) for each of the checkpoints.

Training models

To train a model, set up a configuration file (examples in /configs), and run

python train.py config-file

An example config of self-conditioned GAN on ImageNet is config/imagenet/selfcondgan.yaml and on Places is config/places/selfcondgan.yaml.

Some models may be too large to fit on one GPU, so you may want to add --devices DEVICE_NUMBERS as an additional flag to do multi GPU training.

2D-experiments

For synthetic dataset experiments, first go into the 2d_mix directory.

To train a self-conditioned GAN on the 2D-ring and 2D-grid dataset, run

python train.py --clusterer selfcondgan --data_type ring
python train.py --clusterer selfcondgan --data_type grid

You can test several other configurations via the command line arguments.

Acknowledgments

This code is heavily based on the GAN-stability code base. Our FSD code is taken from the GANseeing work. To compute inception score, we use the code provided from Shichang Tang. To compute FID, we use the code provided from TTUR. We also use pretrained classifiers given by the pytorch-playground.

We thank all the authors for their useful code.

Citation

If you use this code for your research, please cite the following work.

@inproceedings{liu2020selfconditioned,
 title={Diverse Image Generation via Self-Conditioned GANs},
 author={Liu, Steven and Wang, Tongzhou and Bau, David and Zhu, Jun-Yan and Torralba, Antonio},
 booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 year={2020}
}
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022