A Graph Learning library for Humans

Overview

A Graph Learning library for Humans

These novel algorithms include but are not limited to:

  • A graph construction and graph searching class can be found here (NodeGraph). It was developed and invented as a faster alternative for hierarchical DAG construction and searching.
  • A fast DBSCAN method utilizing my connectivity code as invented during my PhD.
  • A NLP pattern matching algorithm useful for sequence alignment clustering.
  • High dimensional alignment code for aligning models to data.
  • An SVD based variant of the Distance Geometry algorithm. For going from relative to absolute coordinates.

License DOI Downloads

Visit the active code via : https://github.com/richardtjornhammar/graphtastic

Pip installation with :

pip install graphtastic

Version controlled installation of the Graphtastic library

The Graphtastic library

In order to run these code snippets we recommend that you download the nix package manager. Nix package manager links from Februari 2022:

https://nixos.org/download.html

$ curl -L https://nixos.org/nix/install | sh

If you cannot install it using your Wintendo then please consider installing Windows Subsystem for Linux first:

https://docs.microsoft.com/en-us/windows/wsl/install-win10

In order to run the code in this notebook you must enter a sensible working environment. Don't worry! We have created one for you. It's version controlled against python3.9 (and experimental python3.10 support) and you can get the file here:

https://github.com/richardtjornhammar/graphtastic/blob/master/env/env39.nix

Since you have installed Nix as well as WSL, or use a Linux (NixOS) or bsd like system, you should be able to execute the following command in a termnial:

$ nix-shell env39.nix

Now you should be able to start your jupyter notebook locally:

$ jupyter-notebook graphhaxxor.ipynb

and that's it.

EXAMPLE 0

Running

import graphtastic.graphs as gg
import graphtastic.clustering as gl
import graphtastic.fit as gf
import graphtastic.convert as gc

Should work if the install was succesful

Example 1 : Absolute and relative coordinates

In this example, we will use the SVD based distance geometry method to go between absolute coordinates, relative coordinate distances and back to ordered absolute coordinates. Absolute coordinates are float values describing the position of something in space. If you have several of these then the same information can be conveyed via the pairwise distance graph. Going from absolute coordinates to pairwise distances is simple and only requires you to calculate all the pairwise distances between your absolute coordinates. Going back to mutually orthogonal ordered coordinates from the pariwise distances is trickier, but a solved problem. The distance geometry can be obtained with SVD and it is implemented in the graphtastic.fit module under the name distance_matrix_to_absolute_coordinates. We start by defining coordinates afterwhich we can calculate the pair distance matrix and transforming it back by using the code below

import numpy as np

coordinates = np.array([[-23.7100 ,  24.1000 ,  85.4400],
  [-22.5600 ,  23.7600 ,  85.6500],
  [-21.5500 ,  24.6200 ,  85.3800],
  [-22.2600 ,  22.4200 ,  86.1900],
  [-23.2900 ,  21.5300 ,  86.4800],
  [-20.9300 ,  22.0300 ,  86.4300],
  [-20.7100 ,  20.7600 ,  86.9400],
  [-21.7900 ,  19.9300 ,  87.1900],
  [-23.0300 ,  20.3300 ,  86.9600],
  [-24.1300 ,  19.4200 ,  87.2500],
  [-23.7400 ,  18.0500 ,  87.0000],
  [-24.4900 ,  19.4600 ,  88.7500],
  [-23.3700 ,  19.8900 ,  89.5200],
  [-24.8500 ,  18.0000 ,  89.0900],
  [-23.9600 ,  17.4800 ,  90.0800],
  [-24.6600 ,  17.2400 ,  87.7500],
  [-24.0800 ,  15.8500 ,  88.0100],
  [-23.9600 ,  15.1600 ,  86.7600],
  [-23.3400 ,  13.7100 ,  87.1000],
  [-21.9600 ,  13.8700 ,  87.6300],
  [-24.1800 ,  13.0300 ,  88.1100],
  [-23.2900 ,  12.8200 ,  85.7600],
  [-23.1900 ,  11.2800 ,  86.2200],
  [-21.8100 ,  11.0000 ,  86.7000],
  [-24.1500 ,  11.0300 ,  87.3200],
  [-23.5300 ,  10.3200 ,  84.9800],
  [-23.5400 ,   8.9800 ,  85.4800],
  [-23.8600 ,   8.0100 ,  84.3400],
  [-23.9800 ,   6.5760 ,  84.8900],
  [-23.2800 ,   6.4460 ,  86.1300],
  [-23.3000 ,   5.7330 ,  83.7800],
  [-22.7300 ,   4.5360 ,  84.3100],
  [-22.2000 ,   6.7130 ,  83.3000],
  [-22.7900 ,   8.0170 ,  83.3800],
  [-21.8100 ,   6.4120 ,  81.9200],
  [-20.8500 ,   5.5220 ,  81.5200],
  [-20.8300 ,   5.5670 ,  80.1200],
  [-21.7700 ,   6.4720 ,  79.7400],
  [-22.3400 ,   6.9680 ,  80.8000],
  [-20.0100 ,   4.6970 ,  82.1500],
  [-19.1800 ,   3.9390 ,  81.4700] ]);

if __name__=='__main__':

    import graphtastic.fit as gf

    distance_matrix = gf.absolute_coordinates_to_distance_matrix( coordinates )
    ordered_coordinates = gf.distance_matrix_to_absolute_coordinates( distance_matrix , n_dimensions=3 )

    print ( ordered_coordinates )

You will notice that the largest variation is now aligned with the X axis, the second most variation aligned with the Y axis and the third most, aligned with the Z axis while the graph topology remained unchanged.

Example 2 : Deterministic DBSCAN

DBSCAN is a clustering algorithm that can be seen as a way of rejecting points, from any cluster, that are positioned in low dense regions of a point cloud. This introduces holes and may result in a larger segment, that would otherwise be connected via a non dense link to become disconnected and form two segments, or clusters. The rejection criterion is simple. The central concern is to evaluate a distance matrix with an applied cutoff this turns the distances into true or false values depending on if a pair distance between point i and j is within the distance cutoff. This new binary Neighbour matrix tells you wether or not two points are neighbours (including itself). The DBSCAN criterion states that a point is not part of any cluster if it has fewer than minPts neighbors. Once you've calculated the distance matrix you can immediately evaluate the number of neighbors each point has and the rejection criterion, via . If the rejection vector R value of a point is True then all the pairwise distances in the distance matrix of that point is set to a value larger than epsilon. This ensures that a distance matrix search will reject those points as neighbours of any other for the choosen epsilon. By tracing out all points that are neighbors and assessing the connectivity (search for connectivity) you can find all the clusters.

import numpy as np
from graphtastic.clustering import dbscan, reformat_dbscan_results
from graphtastic.fit import absolute_coordinates_to_distance_matrix

N   = 100
N05 = int ( np.floor(0.5*N) )
R   = 0.25*np.random.randn(N).reshape(N05,2) + 1.5
P   = 0.50*np.random.randn(N).reshape(N05,2)

coordinates = np.array([*P,*R])

results = dbscan ( distance_matrix = absolute_coordinates_to_distance_matrix(coordinates,bInvPow=True) , eps=0.45 , minPts=4 )
clusters = reformat_dbscan_results(results)
print ( clusters )

Example 3 : NodeGraph, distance matrix to DAG

Here we demonstrate how to convert the graph coordinates into a hierarchy. The leaf nodes will correspond to the coordinate positions.

import numpy as np

coordinates = np.array([[-23.7100 ,  24.1000 ,  85.4400],
  [-22.5600 ,  23.7600 ,  85.6500],
  [-21.5500 ,  24.6200 ,  85.3800],
  [-22.2600 ,  22.4200 ,  86.1900],
  [-23.2900 ,  21.5300 ,  86.4800],
  [-20.9300 ,  22.0300 ,  86.4300],
  [-20.7100 ,  20.7600 ,  86.9400],
  [-21.7900 ,  19.9300 ,  87.1900],
  [-23.0300 ,  20.3300 ,  86.9600],
  [-24.1300 ,  19.4200 ,  87.2500],
  [-23.7400 ,  18.0500 ,  87.0000],
  [-24.4900 ,  19.4600 ,  88.7500],
  [-23.3700 ,  19.8900 ,  89.5200],
  [-24.8500 ,  18.0000 ,  89.0900],
  [-23.9600 ,  17.4800 ,  90.0800],
  [-24.6600 ,  17.2400 ,  87.7500],
  [-24.0800 ,  15.8500 ,  88.0100],
  [-23.9600 ,  15.1600 ,  86.7600],
  [-23.3400 ,  13.7100 ,  87.1000],
  [-21.9600 ,  13.8700 ,  87.6300],
  [-24.1800 ,  13.0300 ,  88.1100],
  [-23.2900 ,  12.8200 ,  85.7600],
  [-23.1900 ,  11.2800 ,  86.2200],
  [-21.8100 ,  11.0000 ,  86.7000],
  [-24.1500 ,  11.0300 ,  87.3200],
  [-23.5300 ,  10.3200 ,  84.9800],
  [-23.5400 ,   8.9800 ,  85.4800],
  [-23.8600 ,   8.0100 ,  84.3400],
  [-23.9800 ,   6.5760 ,  84.8900],
  [-23.2800 ,   6.4460 ,  86.1300],
  [-23.3000 ,   5.7330 ,  83.7800],
  [-22.7300 ,   4.5360 ,  84.3100],
  [-22.2000 ,   6.7130 ,  83.3000],
  [-22.7900 ,   8.0170 ,  83.3800],
  [-21.8100 ,   6.4120 ,  81.9200],
  [-20.8500 ,   5.5220 ,  81.5200],
  [-20.8300 ,   5.5670 ,  80.1200],
  [-21.7700 ,   6.4720 ,  79.7400],
  [-22.3400 ,   6.9680 ,  80.8000],
  [-20.0100 ,   4.6970 ,  82.1500],
  [-19.1800 ,   3.9390 ,  81.4700] ]);


if __name__=='__main__':

    import graphtastic.graphs as gg
    import graphtastic.fit as gf
    GN = gg.NodeGraph()
    #
    # bInvPow refers to the distance type. If True then R distances are returned
    # instead of R2 (R**2) distances. That is also computing the square root if True
    #
    distm = gf.absolute_coordinates_to_distance_matrix( coordinates , bInvPow=True )
    #
    # Now a Graph DAG is constructed from the pairwise distances
    GN.distance_matrix_to_graph_dag( distm )
    #
    # And write it to a json file so that we may employ JS visualisations
    # such as D3 or other nice packages to view our hierarchy
    GN.write_json( jsonfile='./graph_hierarchy.json' )

Manually updated code backups for this library :

GitLab | https://gitlab.com/richardtjornhammar/graphtastic

CSDN | https://codechina.csdn.net/m0_52121311/graphtastic

You might also like...
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

🐍PyNode Next allows you to easily create beautiful graph visualisations and animations
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

Declarative statistical visualization library for Python
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Plotting library for IPython/Jupyter notebooks
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

Cartopy - a cartographic python library with matplotlib support
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

Releases(v0.12.0)
Owner
Richard Tjörnhammar
PhD in Biological physics https://richardtjornhammar.github.io
Richard Tjörnhammar
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
Visualize large time-series data in plotly

plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11

PreDiCT.IDLab 604 Dec 28, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Dimensionality reduction in very large datasets using Siamese Networks

ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis

beringresearch 284 Jan 01, 2023
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
Plotly Dash Command Line Tools - Easily create and deploy Plotly Dash projects from templates

🛠️ dash-tools - Create and Deploy Plotly Dash Apps from Command Line | | | | | Create a templated multi-page Plotly Dash app with CLI in less than 7

Andrew Hossack 50 Dec 30, 2022
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
Simple and lightweight Spotify Overlay written in Python.

Simple Spotify Overlay This is a simple yet powerful Spotify Overlay. About I have been looking for something like this ever since I got Spotify. I th

27 Sep 03, 2022
Friday Night Funkin - converts a chart from 4/4 time to 6/8 time, or from regular to swing tempo.

Chart to swing converter As seen in https://twitter.com/i_winxd/status/1462220493558366214 A program written in python that converts a chart from 4/4

5 Dec 23, 2022
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Sprint planner considering JIRA issues and google calendar meetings schedule.

Sprint planner Sprint planner is a Python script for planning your Jira tasks based on your calendar availability. Installation Use the package manage

Apptension 2 Dec 05, 2021
Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only

Flask JSONDash Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only. Ready to go. This project is a flask blueprint

Chris Tabor 3.3k Dec 31, 2022
A tool for automatically generating 3D printable STLs from freely available lidar scan data.

mini-map-maker A tool for automatically generating 3D printable STLs from freely available lidar scan data. Screenshots Tutorial To use this script, g

Mike Abbott 51 Nov 06, 2022
cqMore is a CadQuery plugin based on CadQuery 2.1.

cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies

Justin Lin 36 Dec 21, 2022
Flow-based visual scripting for Python

A simple visual node editor for Python Ryven combines flow-based visual scripting with Python. It gives you absolute freedom for your nodes and a simp

Leon Thomm 3.1k Jan 06, 2023
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022