Driller: augmenting AFL with symbolic execution!

Related tags

Deep Learningdriller
Overview

Driller

Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Driller selectively traces inputs generated by AFL when AFL stops reporting any paths as 'favorites'. Driller will take all untraced paths which exist in AFL's queue and look for basic block transitions AFL failed to find satisfying inputs for. Driller will then use angr to synthesize inputs for these basic block transitions and present it to AFL for syncing. From here, AFL can determine if any paths generated by Driller are interesting, it will then go ahead and mutate these as normal in an attempt to find more paths.

The "Stuck" heuristic

Driller's symbolic execution component is invoked when AFL is 'stuck'. In this implementation, AFL's progress is determined by its 'pending_favs' attribute which can found in the fuzzer_stats file. When this attribute reaches 0, Driller is invoked. Other heuristics could also be used, and it's infact likely that better heuristics exist.

Use in the Cyber Grand Challenge

This same implementation of Driller was used team Shellphish in DARPA's Cyber Grand Challenge (CGC) to aid in the discovery of exploitable bugs. To see how Driller's invokation was scheduled for the CGC you can look at the Mechanical Phish's scheduler component 'meister'.

Current State and Caveats

The code currently supports three modes of operation:

  • A script that facilitates AFL and driller on one machine (over many cores if needed): https://github.com/shellphish/fuzzer/blob/master/shellphuzz
  • A monitor process watches over the fuzzer_stats file to determine when Driller should be invoked. When Driller looks like it could be useful, the monitor process schedules 'jobs' to work over all the inputs AFL has discovered / deemed interesting.
  • Celery tasks are assigned over a fleet of machines, some number of these tasks are assigned to fuzzing, some are assigned to drilling. Fuzzer tasks monitors the stats file, and invokes driller tasks when Driller looks like it could be useful. Redis is used to sync testcases to the filesystem of the fuzzer.

Driller was built and developed for DECREE binaries. While some support for other formats should work out-of-the-box, expect TracerMisfollowErrors to occur when unsupported or incorrectly implemented simprocedures are hit.

Example

Here is an example of using driller to find new testcases based off the trace of a single testcase.

import driller

d = driller.Driller("./CADET_00001",  # path to the target binary
                    "racecar", # initial testcase
                    "\xff" * 65535, # AFL bitmap with no discovered transitions
                   )

new_inputs = d.drill()

Dependencies

  • Mechaphish Fuzzer component
  • Mechaphish Tracer component
Owner
Shellphish
Shellphish
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022