PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

Overview

PERIN: Permutation-invariant Semantic Parsing

David Samuel & Milan Straka

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics


Paper
Pretrained models
Interactive demo on Google Colab

Overall architecture



PERIN is a universal sentence-to-graph neural network architecture modeling semantic representation from input sequences.

The main characteristics of our approach are:

  • Permutation-invariant model: PERIN is, to our best knowledge, the first graph-based semantic parser that predicts all nodes at once in parallel and trains them with a permutation-invariant loss function.
  • Relative encoding: We present a substantial improvement of relative encoding of node labels, which allows the use of a richer set of encoding rules.
  • Universal architecture: Our work presents a general sentence-to-graph pipeline adaptable for specific frameworks only by adjusting pre-processing and post-processing steps.

Our model was ranked among the two winning systems in both the cross-framework and the cross-lingual tracks of MRP 2020 and significantly advanced the accuracy of semantic parsing from the last year's MRP 2019.



This repository provides the official PyTorch implementation of our paper "ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN" together with pretrained base models for all five frameworks from MRP 2020: AMR, DRG, EDS, PTG and UCCA.



How to run

🐾   Clone repository and install the Python requirements

git clone https://github.com/ufal/perin.git
cd perin

pip3 install -r requirements.txt 
pip3 install git+https://github.com/cfmrp/mtool.git#egg=mtool

🐾   Download and pre-process the dataset

Download the treebanks into ${data_dir} and split the cross-lingual datasets into training and validation parts by running:

./scripts/split_dataset.sh "path_to_a_dataset.mrp"

Preprocess and cache the dataset (computing the relative encodings can take up to several hours):

python3 preprocess.py --config config/base_amr.yaml --data_directory ${data_dir}

You should also download CzEngVallex if you are going to parse PTG:

curl -O https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-1512/czengvallex.zip
unzip czengvallex.zip
rm frames_pairs.xml czengvallex.zip

🐾   Train

To train a shared model for the English and Chinese AMR, run the following script. Other configurations are located in the config folder.

python3 train.py --config config/base_amr.yaml --data_directory ${data_dir} --save_checkpoints --log_wandb

Note that the companion file in needed only to provide the lemmatized forms, so it's also possible to train without it (but that will most likely negatively influence the accuracy of label prediction) -- just set the companion paths to None.

🐾   Inference

You can run the inference on the validation and test datasets by running:

python3 inference.py --checkpoint "path_to_pretrained_model.h5" --data_directory ${data_dir}

Citation

@inproceedings{Sam:Str:20,
  author = {Samuel, David and Straka, Milan},
  title = {{{\'U}FAL} at {MRP}~2020:
           {P}ermutation-Invariant Semantic Parsing in {PERIN}},
  booktitle = CONLL:20:U,
  address = L:CONLL:20,
  pages = {\pages{--}{53}{64}},
  year = 2020
}
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022