Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Overview

KalidoKit - Face, Pose, and Hand Tracking Kinematics

Kalidokit Template

Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models, compatible with Facemesh, Blazepose, Handpose, and Holistic. It takes predicted 3D landmarks and calculates simple euler rotations and blendshape face values.

As the core to Vtuber web apps, Kalidoface and Kalidoface 3D, KalidoKit is designed specifically for rigging 3D VRM models and Live2D avatars!

Kalidokit Template

ko-fi

Install

Via NPM

npm install kalidokit
import * as Kalidokit from "kalidokit";

// or only import the class you need

import { Face, Pose, Hand } from "kalidokit";

Via CDN

">
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/kalidokit.umd.js"></script>

Methods

Kalidokit is composed of 3 classes for Face, Pose, and Hand calculations. They accept landmark outputs from models like Facemesh, Blazepose, Handpose, and Holistic.

// Accepts an array(468 or 478 with iris tracking) of vectors
Kalidokit.Face.solve(facelandmarkArray, {
    runtime: "tfjs", // `mediapipe` or `tfjs`
    video: HTMLVideoElement,
    imageSize: { height: 0, width: 0 },
    smoothBlink: false, // smooth left and right eye blink delays
    blinkSettings: [0.25, 0.75], // adjust upper and lower bound blink sensitivity
});

// Accepts arrays(33) of Pose keypoints and 3D Pose keypoints
Kalidokit.Pose.solve(poseWorld3DArray, poseLandmarkArray, {
    runtime: "tfjs", // `mediapipe` or `tfjs`
    video: HTMLVideoElement,
    imageSize: { height: 0, width: 0 },
    enableLegs: true,
});

// Accepts array(21) of hand landmark vectors; specify 'Right' or 'Left' side
Kalidokit.Hand.solve(handLandmarkArray, "Right");

// Using exported classes directly
Face.solve(facelandmarkArray);
Pose.solve(poseWorld3DArray, poseLandmarkArray);
Hand.solve(handLandmarkArray, "Right");

Additional Utils

// Stabilizes left/right blink delays + wink by providing blenshapes and head rotation
Kalidokit.Face.stabilizeBlink(
    { r: 0, l: 1 }, // left and right eye blendshape values
    headRotationY, // head rotation in radians
    {
        noWink = false, // disables winking
        maxRot = 0.5 // max head rotation in radians before interpolating obscured eyes
    });

// The internal vector math class
Kalidokit.Vector();

Remixable VRM Template with KalidoKit

Quick-start your Vtuber app with this simple remixable example on Glitch. Face, full-body, and hand tracking in under 350 lines of javascript. This demo uses Mediapipe Holistic for body tracking, Three.js + Three-VRM for rendering models, and KalidoKit for the kinematic calculations. This demo uses a minimal amount of easing to smooth animations, but feel free to make it your own!

Remix on Glitch

Basic Usage

Kalidokit Template

The implementation may vary depending on what pose and face detection model you choose to use, but the principle is still the same. This example uses Mediapipe Holistic which concisely combines them together.

{ await holistic.send({image: HTMLVideoElement}); }, width: 640, height: 480 }); camera.start(); ">
import * as Kalidokit from 'kalidokit'
import '@mediapipe/holistic/holistic';
import '@mediapipe/camera_utils/camera_utils';

let holistic = new Holistic({locateFile: (file) => {
    return `https://cdn.jsdelivr.net/npm/@mediapipe/[email protected]/${file}`;
}});

holistic.onResults(results=>{
    // do something with prediction results
    // landmark names may change depending on TFJS/Mediapipe model version
    let facelm = results.faceLandmarks;
    let poselm = results.poseLandmarks;
    let poselm3D = results.ea;
    let rightHandlm = results.rightHandLandmarks;
    let leftHandlm = results.leftHandLandmarks;

    let faceRig = Kalidokit.Face.solve(facelm,{runtime:'mediapipe',video:HTMLVideoElement})
    let poseRig = Kalidokit.Pose.solve(poselm3d,poselm,{runtime:'mediapipe',video:HTMLVideoElement})
    let rightHandRig = Kalidokit.Hand.solve(rightHandlm,"Right")
    let leftHandRig = Kalidokit.Hand.solve(leftHandlm,"Left")

    };
});

// use Mediapipe's webcam utils to send video to holistic every frame
const camera = new Camera(HTMLVideoElement, {
  onFrame: async () => {
    await holistic.send({image: HTMLVideoElement});
  },
  width: 640,
  height: 480
});
camera.start();

Slight differences with Mediapipe and Tensorflow.js

Due to slight differences in the results from Mediapipe and Tensorflow.js, it is recommended to specify which runtime version you are using as well as the video input/image size as a reference.

Kalidokit.Pose.solve(poselm3D,poselm,{
    runtime:'tfjs', // default is 'mediapipe'
    video: HTMLVideoElement,// specify an html video or manually set image size
    imageSize:{
        width: 640,
        height: 480,
    };
})

Kalidokit.Face.solve(facelm,{
    runtime:'mediapipe', // default is 'tfjs'
    video: HTMLVideoElement,// specify an html video or manually set image size
    imageSize:{
        width: 640,
        height: 480,
    };
})

Outputs

Below are the expected results from KalidoKit solvers.

// Kalidokit.Face.solve()
// Head rotations in radians
// Degrees and normalized rotations also available
{
    eye: {l: 1,r: 1},
    mouth: {
        x: 0,
        y: 0,
        shape: {A:0, E:0, I:0, O:0, U:0}
    },
    head: {
        x: 0,
        y: 0,
        z: 0,
        width: 0.3,
        height: 0.6,
        position: {x: 0.5, y: 0.5, z: 0}
    },
    brow: 0,
    pupil: {x: 0, y: 0}
}
// Kalidokit.Pose.solve()
// Joint rotations in radians, leg calculators are a WIP
{
    RightUpperArm: {x: 0, y: 0, z: -1.25},
    LeftUpperArm: {x: 0, y: 0, z: 1.25},
    RightLowerArm: {x: 0, y: 0, z: 0},
    LeftLowerArm: {x: 0, y: 0, z: 0},
    LeftUpperLeg: {x: 0, y: 0, z: 0},
    RightUpperLeg: {x: 0, y: 0, z: 0},
    RightLowerLeg: {x: 0, y: 0, z: 0},
    LeftLowerLeg: {x: 0, y: 0, z: 0},
    LeftHand: {x: 0, y: 0, z: 0},
    RightHand: {x: 0, y: 0, z: 0},
    Spine: {x: 0, y: 0, z: 0},
    Hips: {
        worldPosition: {x: 0, y: 0, z: 0},
        position: {x: 0, y: 0, z: 0},
        rotation: {x: 0, y: 0, z: 0},
    }
}
// Kalidokit.Hand.solve()
// Joint rotations in radians
// only wrist and thumb have 3 degrees of freedom
// all other finger joints move in the Z axis only
{
    RightWrist: {x: -0.13, y: -0.07, z: -1.04},
    RightRingProximal: {x: 0, y: 0, z: -0.13},
    RightRingIntermediate: {x: 0, y: 0, z: -0.4},
    RightRingDistal: {x: 0, y: 0, z: -0.04},
    RightIndexProximal: {x: 0, y: 0, z: -0.24},
    RightIndexIntermediate: {x: 0, y: 0, z: -0.25},
    RightIndexDistal: {x: 0, y: 0, z: -0.06},
    RightMiddleProximal: {x: 0, y: 0, z: -0.09},
    RightMiddleIntermediate: {x: 0, y: 0, z: -0.44},
    RightMiddleDistal: {x: 0, y: 0, z: -0.06},
    RightThumbProximal: {x: -0.23, y: -0.33, z: -0.12},
    RightThumbIntermediate: {x: -0.2, y: -0.19, z: -0.01},
    RightThumbDistal: {x: -0.2, y: 0.002, z: 0.15},
    RightLittleProximal: {x: 0, y: 0, z: -0.09},
    RightLittleIntermediate: {x: 0, y: 0, z: -0.22},
    RightLittleDistal: {x: 0, y: 0, z: -0.1}
}

Community Showcase

If you'd like to share a creative use of KalidoKit, we would love to hear about it! Feel free to also use our Twitter hashtag, #kalidokit.

Kalidoface virtual webcam Kalidoface Pose Demo

Open to Contributions

The current library is a work in progress and contributions to improve it are very welcome. Our goal is to make character face and pose animation even more accessible to creatives regardless of skill level!

Owner
Rich
Making Vtuber apps with Mediapipe and Tensorflow.js
Rich
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022