当前位置:网站首页>Pay “Attention” to Adverse Weather
Pay “Attention” to Adverse Weather
2022-08-11 06:15:00 【zhSunw】
Pay “Attention” to Adverse Weather
Through the local-global attention module to fuse the features of the three modalities of camera, gating and lidar to complete "3D object detection based on weather perception and attention"

Method
Local and Global Attention Network
Local Attention
The features of the three modalities pass through the Inception Block to calculate their respective local attention weights LA:

The features of the modality are multiplied by the corresponding attention map and then added to obtain the local attention map: 
Global Attention
Similarly, the features of the three modalities are passed through the Inception Block to calculate their respective attention weights GA: 

willThe local attention feature map obtained in the previous step is multiplied by the respective attention weights (through the Inception Block) and added to obtain the global attention feature map: 
Experiments
Ablation Experiment: Accuracy Comparison of Different Modal Data and Fusion Method Models on DENSE Dataset
Accuracy comparison of different models on DENSE dataset:
Attention visualization: white ovals highlight the best detection features for each modality
边栏推荐
猜你喜欢
随机推荐
C语言字节对齐,看这篇就够了
动画(其二)
LiDAR Snowfall Simulation for Robust 3D Object Detection
梅科尔工作室-HarmonyOS应用开发第三次培训
经纬度距离
RecycleView
慢查询语句的优化思路
XSS跨站脚本攻击详解以及复现gallerycms字符长度限制短域名绕过
关于安全帽识别系统,你需要知道的选择要点
安全帽识别系统
国内自媒体宣发.多媒体发稿的优势
梅科尔工作室-DjangoWeb 应用框架+MySQL数据库第二次培训
云计算学习笔记——第二章 虚拟化与容器
通过字符设备虚拟文件系统实现kernel和userspace数据交换(基于kernel 5.8测试通过)
GBASE数据库迁移(Oracle到GBase 8s的数据类型映射)
浙江大学软件学院2020年保研上机真题练习
Nodered系列—写入tDengine超级表,自动创建子表
OSI TCP/IP学习笔记
梅科尔工作室-DjangoWeb 应用框架+MySQL数据库第六次培训
TAMNet:A loss-balanced multi-task model for simultaneous detection and segmentation









