当前位置:网站首页>Building googlenet neural network based on pytorch for flower recognition
Building googlenet neural network based on pytorch for flower recognition
2022-04-23 19:40:00 【Bald Sue】
Author's brief introduction : Bald Sue , Committed to describing problems in the most popular language
Looking back : Kalman filter series 1—— Kalman filtering be based on pytorch build AlexNet Neural network is used for flower recognition
Near term goals : Have 5000 fans
Support Xiao Su : give the thumbs-up 、 Collection 、 Leaving a message.
List of articles
be based on pytorch build GoogleNet Neural network is used for flower recognition
Write it at the front
It's been out ahead be based on pytorch build AlexNet Neural network is used for flower recognition and be based on pytorch build VGGNet Neural network is used for flower recognition The article , It is recommended to read the first two articles before reading this article .
The network structure used in this article GoogleNet, So you need to know GoogleNet Have a clear understanding of the structure of , Unclear stamp this icon *** Learn more .
Same as the last one , This article will not explain every step of implementing flower class recognition , Only aim at GoogleNet Elaborate on the details of network construction , You can download it yourself Code Further study .
GoogleNet Network model building
GoogleNet At first glance, the structure of is quite complex , But there are a lot of repetitive structures , namely Inception structure . We can Inception Structure is encapsulated into a class for calling , This will greatly improve the readability of the code .Inception Class is defined as follows :
class Inception(nn.Module):
def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__()
self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1) # Make sure the output size equals the input size
)
self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2) # Make sure the output size equals the input size
)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
)
def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)
outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)
I don't want to explain too much here , Let's compare ourselves GoogleNet The theory of It should be well understood , But here I give a simple explanation of the parameters passed in by this class , In fact, it corresponds to Inception Some parameters of the structure , As shown in the figure below :
Let's talk about BasicConv2d
This east east , This is actually the class we define , The definition is as follows :
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.relu(x)
return x
This is a better understanding , It combines the convolution with the following Relu The activation is encapsulated together
It is worth mentioning that GoogleNet In the network , There are also two auxiliary classifiers with the same structure , To simplify the code , We also encapsulate it as a class , as follows :
class InceptionAux(nn.Module):
def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
self.conv = BasicConv2d(in_channels, 128, kernel_size=1) # output[batch, 128, 4, 4]
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = self.averagePool(x)
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = torch.flatten(x, 1)
x = F.dropout(x, 0.5, training=self.training)
# N x 2048
x = F.relu(self.fc1(x), inplace=True)
x = F.dropout(x, 0.5, training=self.training)
# N x 1024
x = self.fc2(x)
# N x num_classes
return x
In this way, all preparations have been made , We can define our GoogleNet Network :
class GoogLeNet(nn.Module):
def __init__(self, num_classes=1000, aux_logits=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) #ceil_mode=True Indicates that when the obtained characteristic is decimal , Rounding up
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Adaptive average pooling , Change the size of the trait map to 1x1
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)
if init_weights:
self._initialize_weights()
def forward(self, x):
# N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x)
# N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
if self.training and self.aux_logits: # eval model lose this layer
aux1 = self.aux1(x)
x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14
if self.training and self.aux_logits: # eval model lose this layer
aux2 = self.aux2(x)
x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7
x = self.avgpool(x)
# N x 1024 x 1 x 1
x = torch.flatten(x, 1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits: # eval model lose this layer
return x, aux2, aux1
return x
matters needing attention
Let's talk about this part GoogleNet Precautions for building and using network model . We know that GoogleNet There are two auxiliary classifiers , But these two auxiliary classifiers are only used in training , Do not use... During testing .【 Test seasonal parameters self.training and self.aux_logits
The value of is False】 Because two auxiliary classifiers are used in training , So there are three outputs
In the process of forecasting , We don't need our auxiliary classifier , When loading model parameters, you need to set strict=False
Display of training results
This article will not explain the training steps in detail , and be based on pytorch build AlexNet Neural network is used for flower recognition Almost the same . Here are the training results , As shown in the figure below :
Its accuracy has reached 0.742, We can take another look at what we keep GoogleNet Model , Here's the picture , It can be seen that GoogleNet The parameters of are relative to VGG It can be said that there is a lot less , This is also consistent with our theory
Summary
For this part, I strongly recommend that you use Pycharm Debugging function of , Look at the results of each run step by step , In this way, you will find that the code structure is particularly clear .
Reference video :https://www.bilibili.com/video/BV1r7411T7M5/?spm_id_from=333.788
If the article is helpful to you , It would be
Whew, whew, whew ~~duang~~ A great bai
版权声明
本文为[Bald Sue]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204231929292302.html
边栏推荐
- An algorithm problem was encountered during the interview_ Find the mirrored word pairs in the dictionary
- filebeat、logstash配置安装
- A brief explanation of golang's keyword "competence"
- 对普通bean进行Autowired字段注入
- Garbage collector and memory allocation strategy
- @Analysis of conditional on Web Application
- php参考手册String(7.2千字)
- How to uninstall easyton
- Strange passion
- Build intelligent garbage classification applet based on Zero
猜你喜欢
C6748 软件仿真和硬件测试 ---附详细FFT硬件测量时间
[transfer] summary of new features of js-es6 (one picture)
Decompile and get the source code of any wechat applet - just read this (latest)
精简CUDA教程——CUDA Driver API
Application of DCT transform
Esp8266 - beginner level Chapter 1
Pdf reference learning notes
Kubernetes entry to mastery - bare metal loadbalance 80 443 port exposure precautions
Deep learning -- Summary of Feature Engineering
RuntimeError: Providing a bool or integral fill value without setting the optional `dtype` or `out`
随机推荐
Command - sudo
MFC获取本机IP(网络通讯时用得多)
Inject Autowired fields into ordinary beans
Speculation on the way to realize the smooth drag preview of video editing software
Why is PostgreSQL about to surpass SQL Server?
What is a message queue
Openlayers 5.0 two centering methods
MySQL数据库 - 单表查询(一)
深度学习环境搭建步骤—gpu
Go modules daily use
Virtual machine performance monitoring and fault handling tools
php参考手册String(7.2千字)
视频理解-Video Understanding
MySQL syntax collation
PostgreSQL
uIP1.0 主动发送的问题理解
Distinction between pointer array and array pointer
Pdf reference learning notes
Matlab 2019 installation of deep learning toolbox model for googlenet network
Build intelligent garbage classification applet based on Zero