当前位置:网站首页>Product Quantization (PQ)
Product Quantization (PQ)
2022-08-09 10:47:00 【qq_26391203】
How product quantization is used in image retrieval:
"' After quantitative learning, for a given query sample, the query sample and library can be calculated by looking up a tableAsymmetric distance of the samples in"'
A brief description of product quantization: The typical representative of vector quantization methods is the product quantization (PQ, Product
Quantization) method, which decomposes the feature space into Cartesian products of multiple low-dimensional subspaces, and then quantize each subspace individually.In the training phase, each subspace is clustered to obtain kk centroids (ie quantizers), and the Cartesian product of all these centroids constitutes a dense division of the whole space, and can ensure that the quantization error is relatively small;After quantitative learning, for a given query sample, the asymmetric distance between the query sample and the sample in the library can be calculated by looking up the table.Approximate Nearest Neighbor Search- K-means clustering algorithm: Clustering belongs to unsupervised learning, the previous regression, Naive Bayes, SVM, etc. all have the category label y, that is to say, the classification of the sample has been given in the sample.However, there is no y given in the clustered samples, only the feature x. For example, it is assumed that the stars in the universe can be represented as the point set clip_image002 [10] in the three-dimensional space.The purpose of clustering is to find the latent class y of each sample x and put together samples x of the same class y.For example, for the stars above, after clustering, the result is a cluster of stars. The points in the cluster are relatively close to each other, and the distance between the stars in the cluster is relatively far.
- Product quantization process idea: https://www.cnblogs.com/mafuqiang/p/7161592.html
边栏推荐
- 机器学习--朴素贝叶斯(Naive Bayes)
- 多商户商城系统功能拆解26讲-平台端分销设置
- Received your first five-figure salary
- OpenGL 2.0编程例子
- 情感分析SowNLP词库
- Unix Environment Programming Chapter 15 15.9 Shared Storage
- Unix System Programming Chapter 15 15.2 Pipes
- 解决1.tensorflow运行使用CPU不使用GPU 2.tensorflow环境下的GPU版本号 3.tensorflow和cuda以及cudnn版本对应问题 4.查看cuda和cudnn版本
- xmms的均衡器试验成功 音效相当不错 比rockbox可能还要好
- 使用cpolar远程连接群晖NAS(创建临时链接)
猜你喜欢

人物 | 从程序员到架构师,我是如何快速成长的?

The common problems in laptops, continuously updated

机器学习--朴素贝叶斯(Naive Bayes)
一天半的结果——xmms on E2

pytorch widedeep文档

Cluster understanding

PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization论文阅读

jmeter BeanShell 后置处理器

深度学习--自编码器(AutoEncoder)

2022年台湾省矢量数据(点线面)及数字高程数据下载
随机推荐
1003 我要通过! (20 分)
Electron application development best practices
Cpolar内网穿透的面板功能介绍
Unix Environment Programming Chapter 15 15.3 Functions popen and pclose
[Error record] Solve the problem that ASRock J3455-ITX cannot be turned on without a monitor plugged in
一键完成物联网产品注册,快速体验在线调试设备
Received your first five-figure salary
unix环境编程 第十五章 15.8信号量
snmp++编译错误问题解决方法
json库的dumps()方法和loads()方法
深度学习--自编码器(AutoEncoder)
Win32控件--------------------WM_DRAWITEM消息测试程序
情感分析SowNLP词库
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization Paper Reading
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization论文阅读
shell脚本实战(第2版)/人民邮电出版社 脚本2 验证输入:仅限字母和数字
百度云大文件网页直接下载
10000以内素数表(代码块)
商业技术解决方案与高阶技术专题 - 数据可视化专题
解决1.tensorflow运行使用CPU不使用GPU 2.tensorflow环境下的GPU版本号 3.tensorflow和cuda以及cudnn版本对应问题 4.查看cuda和cudnn版本