当前位置:网站首页>Product Quantization (PQ)
Product Quantization (PQ)
2022-08-09 10:47:00 【qq_26391203】
How product quantization is used in image retrieval:
"' After quantitative learning, for a given query sample, the query sample and library can be calculated by looking up a tableAsymmetric distance of the samples in"'
A brief description of product quantization: The typical representative of vector quantization methods is the product quantization (PQ, Product
Quantization) method, which decomposes the feature space into Cartesian products of multiple low-dimensional subspaces, and then quantize each subspace individually.In the training phase, each subspace is clustered to obtain kk centroids (ie quantizers), and the Cartesian product of all these centroids constitutes a dense division of the whole space, and can ensure that the quantization error is relatively small;After quantitative learning, for a given query sample, the asymmetric distance between the query sample and the sample in the library can be calculated by looking up the table.Approximate Nearest Neighbor Search- K-means clustering algorithm: Clustering belongs to unsupervised learning, the previous regression, Naive Bayes, SVM, etc. all have the category label y, that is to say, the classification of the sample has been given in the sample.However, there is no y given in the clustered samples, only the feature x. For example, it is assumed that the stars in the universe can be represented as the point set clip_image002 [10] in the three-dimensional space.The purpose of clustering is to find the latent class y of each sample x and put together samples x of the same class y.For example, for the stars above, after clustering, the result is a cluster of stars. The points in the cluster are relatively close to each other, and the distance between the stars in the cluster is relatively far.
- Product quantization process idea: https://www.cnblogs.com/mafuqiang/p/7161592.html
边栏推荐
- 深度学习--自编码器(AutoEncoder)
- 力扣(LeetCode)220. 存在重复元素 III(2022.08.08)
- Shell script combat (2nd edition) / People's Posts and Telecommunications Press Script 1 Find programs in the PATH
- 百度云大文件网页直接下载
- unix环境编程 第十五章 15.6 XSI IPC
- numpy库中的函数 bincount() where() diag() all()
- 聚类了解
- ESIM(Enhanced Sequential Inference Model)- 模型详解
- 研发需求的验收标准应该怎么写? | 敏捷实践
- Win32控件------------显示系统使用的控件版本
猜你喜欢
Shell script combat (2nd edition) / People's Posts and Telecommunications Press Script 2 Validate input: letters and numbers only
想了解API接口,这一篇就够了
2022年台湾省矢量数据(点线面)及数字高程数据下载
可能95%的人还在犯的PyTorch错误
Solve the ali cloud oss - the original 】 【 exe double-click response can't open, to provide a solution
shap库源码和代码实现
强化学习 (Reinforcement Learning)
Netscope:神经网络结构在线可视化工具
研发需求的验收标准应该怎么写? | 敏捷实践
OneNote 教程,如何在 OneNote 中搜索和查找笔记?
随机推荐
[华为云在线课程][SQL语法分类][数据操作][学习笔记]
Official explanation, detailed explanation and example of torch.cat() function
深度学习--神经网络(基础讲解)
学习NET-SNMP之一 ---------编译NET-SNMP程序。
ESIM(Enhanced Sequential Inference Model)- 模型详解
多商户商城系统功能拆解26讲-平台端分销设置
String类型的字符串对象转实体类和String类型的Array转List
Unix Environment Programming Chapter 15 15.9 Shared Storage
snmp++编译错误问题解决方法
【报错记录】解决华擎J3455-ITX不插显示器无法开机的问题
15.8 the semaphore Unix environment programming chapter 15
unix系统编程 第十五章 15.2管道
力扣(LeetCode)220. 存在重复元素 III(2022.08.08)
使用pip成功安装某个库,但pycharm中找不到,此问题的解决方案
强化学习 (Reinforcement Learning)
How to quickly get through the mirror release process?
The complete grammar of CSDN's markdown editor
备战金三银四:如何成功拿到阿里offer(经历+面试题+如何准备)
Unix System Programming Chapter 15 15.2 Pipes
真香!肝完Alibaba这份面试通关宝典,我成功拿下今年第15个Offer