当前位置:网站首页>Named in pytoch_ parameters、named_ children、named_ Modules function
Named in pytoch_ parameters、named_ children、named_ Modules function
2022-04-23 15:43:00 【If you encounter a barrier, you have to step over it】
named_parameters function
- Returns... As an iterator model All the parameters in , The return value is one
Dictionaries
: containName of parameter
andValue size
; - Used in internal implementation
A recursive algorithm
, So for nested network parameters , MeetingRecursive traversal
, OutputBottom layer parameters
, See the following example ;
named_children() function
- This function is used to output the data in the network
Layer 1 module name and instance object
, Only the top module name will be displayed ;
named_modules() function
- This function is used to recursively output the data in the network
Module name and instance object of each layer
, The first mock exam will display the name of each module in all layers.
Example
import torch
import torch.nn as nn
class TestModel(nn.Module):
def __init__(self):
super(TestModel,self).__init__()
# Conventional convolution layer , The input channel is 3, The output channel is 12
self.conv1 = nn.Conv2d(3, 12, kernel_size=3, padding=1)
self.layer1 = nn.Sequential(
nn.Conv2d(12, 6, kernel_size=3, padding=1),
nn.Conv2d(6, 6, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv1(x)
x = self.layer1(x)
model = TestModel()
named_parameters = model.named_parameters()
print('------------parameters-----------------')
for name, parameter in named_parameters:
print(name)
named_children = model.named_children()
print('------------parameters-----------------')
for name, children in named_children:
print(name)
named_modules = model.named_modules()
print('------------modules-----------------')
for name, module in named_modules:
print(name)
------------ Output --------------------------
------------parameters-----------------
conv1.weight
conv1.bias
layer1.0.weight # You can see that for sequential The modules in the module are given a numeric number
layer1.0.bias
layer1.1.weight
layer1.1.bias
------------parameters-----------------
conv1
layer1
------------modules-----------------
conv1
layer1
layer1.0
layer1.1
layer1.2
版权声明
本文为[If you encounter a barrier, you have to step over it]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204231532210552.html
边栏推荐
猜你喜欢
导入地址表分析(根据库文件名求出:导入函数数量、函数序号、函数名称)
pgpool-II 4.3 中文手册 - 入门教程
IronPDF for . NET 2022.4.5455
时序模型:门控循环单元网络(GRU)
【AI周报】英伟达用AI设计芯片;不完美的Transformer要克服自注意力的理论缺陷
mysql乐观锁解决并发冲突
Why is IP direct connection prohibited in large-scale Internet
Knn,Kmeans和GMM
Temporal model: long-term and short-term memory network (LSTM)
Modèle de Cluster MySQL et scénario d'application
随机推荐
utils.DeprecatedIn35 因升级可能取消,该如何办
Modèle de Cluster MySQL et scénario d'application
Multi level cache usage
如果conda找不到想要安装的库怎么办PackagesNotFoundError: The following packages are not available from current
Introduction to dynamic programming of leetcode learning plan day3 (198213740)
【递归之数的拆分】n分k,限定范围的拆分
Temporal model: long-term and short-term memory network (LSTM)
移动app软件测试工具有哪些?第三方软件测评小编分享
Application of Bloom filter in 100 million flow e-commerce system
WPS品牌再升级专注国内,另两款国产软件低调出国门,却遭禁令
Crawling fragment of a button style on a website
For examination
字符串最后一个单词的长度
Timing model: gated cyclic unit network (Gru)
导入地址表分析(根据库文件名求出:导入函数数量、函数序号、函数名称)
控制结构(一)
携号转网最大赢家是中国电信,为何人们嫌弃中国移动和中国联通?
基于 TiDB 的 Apache APISIX 高可用配置中心的最佳实践
PHP function
自主作业智慧农场创新论坛