当前位置:网站首页>【无标题】
【无标题】
2022-08-10 04:22:00 【kyccom】
使用回归 (regression)进行预测
1.导入模块
!pip install seaborn
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
tf.__version__
2.下载数据集
dataset_path = keras.utils.get_file('auto-img.data', 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data')
dataset_path
运行后输出:
‘C:\Users\Administrator\.keras\datasets\auto-img.data’
查看一下数据集中的内容:
column_names = ['MPG','Cylinders','Displacement','Horsepowner','Weight','Acceleration', 'Model Year','Origin']
raw_dataset = pd.read_csv(dataset_path, names=column_names,
na_values='?', comment='\t',
sep=' ',skipinitialspace=True)
dataset = raw_dataset.copy()
dataset.tail()
3.数据清洗
查看一下有没有空值:
dataset.isna().sum()
输出结果:
MPG 0
Cylinders 0
Displacement 0
Horsepowner 6
Weight 0
Acceleration 0
Model Year 0
Origin 0
dtype: int64
不管有没有空值 ,去除一下:
dataset = dataset.dropna()
用pop 命令, 把origin列做拿出来,后续作为为独热编码:
origin = dataset.pop('Origin')
给表增加列:
dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
dataset.tail()
在这里插入图片描述
将数据集拆分为验证集与训练集
train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)
用seaborn 查看一下情况
sns.pairplot(train_dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']], diag_kind='kde')
看一下透视统计:
train_stats = train_dataset.describe()
train_stats.pop('MPG')
train_stats = train_stats.transpose()
train_stats
把标签分离出来
train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')
数据归一化(每个值减去均值后再除以标准差)
def norm(x):
return (x - train_stats['mean'])/train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)
4.构建模型
def build_model():
model = keras.Sequential([
layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]),
layers.Dense(64, activation='relu'),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mse',
optimizer=optimizer,
metrics=['mae', 'mse'])
return model
model = build_model()
model.summary()
Model: “sequential_2”
Layer (type) Output Shape Param #
dense_3 (Dense) (None, 64) 640
dense_4 (Dense) (None, 64) 4160
dense_5 (Dense) (None, 1) 65
=================================================================
Total params: 4,865
Trainable params: 4,865
Non-trainable params: 0
测试一下预测:
example_batch = normed_train_data[:10]
example_result = model.predict(example_batch)
example_result
1/1 [==============================] - 0s 311ms/step
array([[ 0.1861527 ],
[-0.03714132],
[ 0.41865367],
[ 0.08125568],
[ 0.35935453],
[ 0.14658093],
[ 0.42246234],
[ 0.07202747],
[ 0.08832908],
[ 0.41105857]], dtype=float32)
5. 开始训练
class PrintDot(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs):
if epoch%100 ==0:print('')
print('.', end='')
EPOCHS = 10000
history = model.fit(
normed_train_data, train_labels,
epochs=EPOCHS, validation_split=0.2, verbose=0,
callbacks=[PrintDot()])
来看一下模型中的参数
hist= pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()
6.图形化显示
def plot_history(history):
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Abs Error [MGP]')
plt.plot(hist['epoch'], hist['mae'], label='Val Error')
plt.plot(hist['epoch'], hist['val_mae'], label='Val Error')
plt.ylim([0,5])
plt.legend()
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Square Error [$MGP^2$]')
plt.plot(hist['epoch'], hist['mse'], label='Train Error')
plt.plot(hist['epoch'], hist['val_mse'], label='Val Error')
plt.ylim([0,20])
plt.legend()
plt.show()
运行一下:
plot_history(history)
再优化一下
model = build_model()
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
history = model.fit(normed_train_data, train_labels, epochs=EPOCHS,
validation_split=0.2, verbose=0, callbacks= [early_stop, PrintDot()])
plot_history(history)
loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2)
print("Testing set Mean Abs Error: {:5.2f} MPG".format(mae))
3/3 - 0s - loss: 6.5743 - mae: 1.8934 - mse: 6.5743 - 37ms/epoch - 12ms/step
Testing set Mean Abs Error: 1.89 MPG
用测数据预测一下MPG
test_predictions = model.predict(normed_test_data).flatten()
plt.scatter(test_labels, test_predictions)
plt.xlabel('True Values [MPG]')
plt.ylabel('Predictions [MPG]')
plt.axis('equal')
plt.axis('square')
plt.xlim([0,plt.xlim()[1]])
plt.ylim([0,plt.ylim()[1]])
_ = plt.plot([-100, 100], [-100, 100])
这看起来我们的模型预测得相当好。我们来看下误差分布。
error = test_predictions - test_labels
plt.hist(error, bins = 25)
plt.xlabel("Prediction Error [MPG]")
_ = plt.ylabel("Count")
边栏推荐
猜你喜欢
LeetCode·124.二叉树中的最大路径和·递归
最牛最全的 Postman 实现 API 自动化测试教程
【u-boot】u-boot驱动模型分析(02)
【MindSpore】在训练过程中的step代表什么?
2022G3 Boiler Water Treatment Exam Mock 100 Questions and Mock Exam
小影科技IPO被终止:年营收3.85亿 五岳与达晨是股东
干货 | 查资料利器:线上图书馆
阿笑家的黄桃
Using the DatePicker date control, Prop being mutated: "placement" error occurs
3、ROS工作空间的创建
随机推荐
Flink CDC介绍和个人理解
什么是遗留代码:有效地处理遗留代码的8个小贴士
ZZULIOJ:1026: 字符类型判断
【OpenCV图像处理5】图像的变换
ZZULIOJ:1019: 公园门票
798. 差分矩阵
WAN技术-1广域网接口
ZZULIOJ:1018: 奇数偶数
[crit] 23856#0: *101796511 stat()
BGP实验+选路+路由策略+OSPF
【心理学·人物】第二期(学术X综艺)
redis basic data types
GBase 8s迁移失败
sql注入之宽字节注入,limit,order by
2022年R2移动式压力容器充装考试题库模拟考试平台操作
wind7 无法安装tools (问题已解决)
整理零碎东西
2022G3 Boiler Water Treatment Exam Mock 100 Questions and Mock Exam
2022年危险化学品经营单位主要负责人题库及模拟考试
ctf-pikachu-file_inclusion