当前位置:网站首页>TAMNet: A loss-balanced multi-task model for simultaneous detection and segmentation
TAMNet: A loss-balanced multi-task model for simultaneous detection and segmentation
2022-08-11 06:15:00 【zhSunw】

The framework uses SSD and FCN as pipeline.
- Task-related Attention Module (TAM): Consider the features of two tasks at the same time and use the attention mechanism to weight

1. After adding the features of the two branches, the weighted map is obtained through the attention module (CNN)
2. The two features are weighted with the weighted map and then combined withAdd the original features to get the final feature
Public expression: F represents the previous feature, M represents the weighted graph, i, c represent the spatial subscript and channel subscript respectively
- Optimization method
Most of the practice is to manually set the weight W:
This paper proposes that the difficulty of task t at step i+1 is:
Define rewards (weights) based on the difficulty of each task:


So:
边栏推荐
猜你喜欢
随机推荐
【OAuth2】授权机制
GBase 8a语法格式
若依分离版—增加通知公告预览功能
Socket 网络协议 等
梅科尔工作室-DjangoWeb 应用框架+MySQL数据库第五次培训
Redis持久化方案RDB详解
Haproxy集群
动画(其一)
Robust 3D Object Detection in Cold Weather Conditions
360°大视野安全帽识别系统-深度学习智能视频分析
AI智能图像识别的工作原理及行业应用
GBase 8s与Oracle锁对比
软件架构之--MVC、MVP、MVVM
MPLS 实验
内核与用户空间通过字符设备通信
利用Redis的bitMap完成用户签到功能
mysql基本概念之索引
GBase 8s是如何保证数据一致性
实例分析MySQL四种隔离级别的区别
慢查询语句的优化思路
![《现代密码学》学习笔记——第三章 分组密码 [三]分组密码的运行模式](/img/31/e64d08fdc9b55596f2c38914d705e6.png)








