当前位置:网站首页>深度神经网络与人脑神经网络哪些区域有一定联系?

深度神经网络与人脑神经网络哪些区域有一定联系?

2022-08-11 09:24:00 阳阳2013哈哈

matlab中BP神经网络OCR识别?

单看错误率分析不出来什么,可能是样本量太少,也可能是别的原因。可以把错误识别的样本拿出来,看看是哪些地方导致的错误,再有针对性的改进。

还可能是特征工程不到位,特征选取的不好,不满足尺度不变性、旋转不变性、仿射不变性三个要素,说白了就是,大小变了,旋转的角度变了,拍照的时候站的位置不同导致对车牌的透视发生变化了,然后可能就识别不出来了。

所以可以考虑找一个更好的描述特征的方法,比如HoG(方向梯度直方图)。

HoG,简单说就是,相邻的两个像素值做个减法,就可以表示颜色的变化,那么一个像素周围,上下、左右各有两个像素,就可以分别做两个减法,得到两个值,就像力学里两个力可以合并一样,这两个值也可以合并,得到方向,和大小(就是梯度),这样就有了一个像素的特征。

但是特征太多计算量太大,就用统计的方法减少下特征,首先把图片划分成网格的形式,就像是在图像上画围棋线一样,然后每个方格内单独统计一下,方向在0-20角度内的像素的梯度的和是多少,依次类推,就得到了直方图,如果以20度为一个直方的话,那么180度就可以划分成9个直方,也就是9个特征,这样一个方格内的特征数量就与像素的数量无关了,而是固定了的。

然后就是关于HoG的其他手段了,比如为了消除光照变化,可以对特征向量做归一化等。

另外还可以对HoG可视化,在每个方格内,用线的方向和长度代替特征的方向和梯度,最后呈现的效果是,有若干个方格,每个方格内都好像有一个沿原点对称的星星,这样做对分析算法效果有一定帮助。

HoG是比较常见的特征描述子了,在行人检测上用的比较多。除了HoG,还有SIFT、SURF等特征描述子,这些都是计算机视觉中的内容了,属于特征检测的范畴。

计算机视觉主要包括二值化、滤波器、特征检测、特征匹配等一些基础的手段,然后就是图像滤镜、图像分割、图像识别、图像生成等具体的应用算法。

由于近年来计算成本降低导致神经网络的再度崛起,计算机视觉的研究热点已经转为深度神经网络的各种改进和性能优化上了,像HoG已经是05年的事情了。

关于车牌识别(LPR),如果环境不复杂,是可以做到接近100%的准确率的,如果环境较为复杂,95%以上准确率应该是可以做到的。总的来说,基本已经实现应用落地和商用了。

现在的方法基本都是深度学习,端到端一气呵成,无需专门提取特征,传统的模式识别方法已经GG。说的比较细。

如果只是关心结果的话,Github上可以找到关于车牌识别的一些开源项目,比如openalpr之类的,当然也是采用深度学习的办法,炼丹嘛,就是这么直接。

深度学习ocr识别和传统ocr的区别

AI爱发猫

名片识别软件源于OCR识别发展于深度学习2016-12-1617:42名片识别软件是指名片经过手机拍照识别,导入手机通讯录后,利用软件是、SyncML标准同步至云端,便可进行WEB/WAP云端人脉管理,轻松摆脱纸质名片难管理的烦恼。

当手机通讯录同步至网络云端后,人脉管理便达到质的飞跃。无论是商务办公人员,还是政企领导,都能在云端轻松实现便捷价廉的各类网络通讯和人脉便捷管理。

为了提高在移动终端上输入名片信息的速度和准确性,北京中安未来推出汇卡名片识别软件,以满足各个行业对名片信息自动录入的需求,只需在APP中集成汇卡名片识别SDK,用户便可通过手机拍照,自动录入识别名片信息。

尤其是在crm系统中,引入名片识别软件后将名片识别开发包嵌入到crm系统后就能把纸质名片上面的字段自动提取出来,导入到通讯录中,大大减少录入名片所花的时间,提升效率。

北京中安未来针为了满足不同用户的需求,搭建了自己的云平台,大家可以在云平台上体验名片识别,还可以通过API接口的形式和微信公众号进行挂接,全面支持微信H5的挂接,北京中安未来推出的名片识别软件全面打通了移动端Android和iOS,WEB网页,微信公众号H5,可谓是全网通。

汇卡名片识别源于OCR识别技术,北京中安未来的OCR技术来源于TH-OCR识别核心,经过20多年的OCR识别技术和经验积累,利用最近特别火爆的人工智能技术,通过引入深度学习算法,现在汇卡名片识别识别速度,识别率都处于行业领先位置。

在社交过程中会遇到各种各样的名片,如果手动录入的话看着都头疼,还要手动录入,烦呀,现在有了中安未来名片识别软件,只需要用手机对准名片扫一扫或者拍个照就可以把名片上的字段识别出来省去手动录入。

OCR深度学习平台是什么?

银行卡识别利用的是不是OCR识别技术呀!怎么能提高银行卡识别的识别效果,通过深度学习行不行?

深度学习的职业发展方向有哪些?

当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。

本文旨在分析深度学习技术现状,研判深度学习发展趋势,并针对我国的技术水平提出发展建议。一、深度学习技术现状深度学习是本轮人工智能爆发的关键技术。

人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。

其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络的语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。

准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。深度学习是大数据时代的算法利器,成为近几年的研究热点。和传统的机器学习算法相比,深度学习技术有着两方面的优势。

一是深度学习技术可随着数据规模的增加不断提升其性能,而传统机器学习算法难以利用海量数据持续提升其性能。

二是深度学习技术可以从数据中直接提取特征,削减了对每一个问题设计特征提取器的工作,而传统机器学习算法需要人工提取特征。

因此,深度学习成为大数据时代的热点技术,学术界和产业界都对深度学习展开了大量的研究和实践工作。深度学习各类模型全面赋能基础应用。卷积神经网络和循环神经网络是两类获得广泛应用的深度神经网络模型。

计算机视觉和自然语言处理是人工智能两大基础应用。卷积神经网络广泛应用于计算机视觉领域,在图像分类、目标检测、语义分割等任务上的表现大大超越传统方法。

循环神经网络适合解决序列信息相关问题,已广泛应用于自然语言处理领域,如语音识别、机器翻译、对话系统等。深度学习技术仍不完美,有待于进一步提升。

一是深度神经网络的模型复杂度高,巨量的参数导致模型尺寸大,难以部署到移动终端设备。二是模型训练所需的数据量大,而训练数据样本获取、标注成本高,有些场景样本难以获取。

三是应用门槛高,算法建模及调参过程复杂繁琐、算法设计周期长、系统实施维护困难。四是缺乏因果推理能力,图灵奖得主、贝叶斯网络之父JudeaPearl指出当前的深度学习不过只是“曲线拟合”。

五是存在可解释性问题,由于内部的参数共享和复杂的特征抽取与组合,很难解释模型到底学习到了什么,但出于安全性考虑以及伦理和法律的需要,算法的可解释性又是十分必要的。因此,深度学习仍需解决以上问题。

二、深度学习发展趋势深度神经网络呈现层数越来越深,结构越来越复杂的发展趋势。为了不断提升深度神经网络的性能,业界从网络深度和网络结构两方面持续进行探索。

神经网络的层数已扩展到上百层甚至上千层,随着网络层数的不断加深,其学习效果也越来越好,2015年微软提出的ResNet以152层的网络深度在图像分类任务上准确率首次超过人眼。

新的网络设计结构不断被提出,使得神经网络的结构越来越复杂。

如:2014年谷歌提出了Inception网络结构、2015年微软提出了残差网络结构、2016年黄高等人提出了密集连接网络结构,这些网络结构设计不断提升了深度神经网络的性能。

深度神经网络节点功能不断丰富。为了克服目前神经网络存在的局限性,业界探索并提出了新型神经网络节点,使得神经网络的功能越来越丰富。

2017年,杰弗里辛顿提出了胶囊网络的概念,采用胶囊作为网络节点,理论上更接近人脑的行为,旨在克服卷积神经网络没有空间分层和推理能力等局限性。

2018年,DeepMind、谷歌大脑、MIT的学者联合提出了图网络的概念,定义了一类新的模块,具有关系归纳偏置功能,旨在赋予深度学习因果推理的能力。深度神经网络工程化应用技术不断深化。

深度神经网络模型大都具有上亿的参数量和数百兆的占用空间,运算量大,难以部署到智能手机、摄像头和可穿戴设备等性能和资源受限的终端类设备。

为了解决这个问题,业界采用模型压缩技术降低模型参数量和尺寸,减少运算量。目前采用的模型压缩方法包括对已训练好的模型做修剪(如剪枝、权值共享和量化等)和设计更精细的模型(如MobileNet等)两类。

深度学习算法建模及调参过程繁琐,应用门槛高。为了降低深度学习的应用门槛,业界提出了自动化机器学习(AutoML)技术,可实现深度神经网络的自动化设计,简化使用流程。

深度学习与多种机器学习技术不断融合发展。

深度学习与强化学习融合发展诞生的深度强化学习技术,结合了深度学习的感知能力和强化学习的决策能力,克服了强化学习只适用于状态为离散且低维的缺陷,可直接从高维原始数据学习控制策略。

为了降低深度神经网络模型训练所需的数据量,业界引入了迁移学习的思想,从而诞生了深度迁移学习技术。迁移学习是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。

通过将训练好的模型迁移到类似场景,实现只需少量的训练数据就可以达到较好的效果。三、未来发展建议加强图网络、深度强化学习以及生成式对抗网络等前沿技术研究。

由于我国在深度学习领域缺乏重大原创性研究成果,基础理论研究贡献不足,如胶囊网络、图网络等创新性、原创性概念是由美国专家提出,我国研究贡献不足。

在深度强化学习方面,目前最新的研究成果大都是由DeepMind和OpenAI等国外公司的研究人员提出,我国尚没有突破性研究成果。

近几年的研究热点生成式对抗网络(GAN)是由美国的研究人员Goodfellow提出,并且谷歌、facebook、twitter和苹果等公司纷纷提出了各种改进和应用模型,有力推动了GAN技术的发展,而我国在这方面取得的研究成果较少。

因此,应鼓励科研院所及企业加强深度神经网络与因果推理模型结合、生成式对抗网络以及深度强化学习等前沿技术的研究,提出更多原创性研究成果,增强全球学术研究影响力。

加快自动化机器学习、模型压缩等深度学习应用技术研究。依托国内的市场优势和企业的成长优势,针对具有我国特色的个性化应用需求,加快对深度学习应用技术的研究。

加强对自动化机器学习、模型压缩等技术的研究,加快深度学习的工程化落地应用。加强深度学习在计算机视觉领域应用研究,进一步提升目标识别等视觉任务的准确率,以及在实际应用场景中的性能。

加强深度学习在自然语言处理领域的应用研究,提出性能更优的算法模型,提升机器翻译、对话系统等应用的性能。

来源:产业智能官END更多精彩内容请登录官方网站往期精选▼1.饮鹿网2018-2019年中国人工智能产业创新百强榜单发布!2.饮鹿网2018-2019年中国人工智能产业Top20投资机构榜单发布!

3.饮鹿网2018-2019年中国大数据产业创新百强榜单发布!4.饮鹿网2018-2019年中国大数据产业Top20投资机构榜单发布!

5.饮鹿网2018-2019年中国物联网产业创新百强榜单发布!6.饮鹿网2018-2019年中国5G与物联网产业TOP20投资机构榜单发布!

7.饮鹿网2018-2019年中国集成电路产业创新百强榜单发布!8.饮鹿网2018-2019年中国集成电路产业Top20投资机构榜单发布!

9.饮鹿网2018-2019年中国企业服务产业创新百强榜单发布!10.饮鹿网2018-2019年中国企业服务产业TOP20投资机构榜单发布!

国内深度学习领域比较厉害的教授有哪些

在过去的三十年,深度学习运动一度被认为是学术界的一个异类,但是现在,GeoffHinton(如图1)和他的深度学习同事,包括纽约大学YannLeCun和蒙特利尔大学的YoshuaBengio,在互联网世界受到前所未有的关注。

Hinton是加拿大多伦多大学教授和研究员,目前就职于Google,他利用深度学习技术来提高语音识别、图像标签以及其他无数在线工具的用户体验,LeCun在Facebook做类似的工作。

当下人工智能在微软、IBM以及百度和许多其它公司受到极大的关注。我非常兴奋,我们发现一种可以使神经网络变得更好的方法,尤其是这种方法能够揭示大脑是如何工作的时候——GeoffHinton。

GeoffHinton等人亲手缔造了深度学习的复兴Hinton本科阶段在剑桥学习心理学,他意识到科学家们并没有真正理解大脑——不能完全掌握数十亿神经元之间的交互以及如何提升智力。

这些科学家可以解释电信号沿着一个轴突连接一个神经元到另一个,但他们无法解释这些神经元是如何学习或计算的。Hinton认为这些都是大问题,答案可能最终让我们实现1950年代人工智能研究人员的梦想。

图1:GeoffHinton(AI领袖级人物,目前就职于Google)他也没有答案,但他将尽全力寻找答案,至少改进的人工神经网络可以模拟人脑的某些方面。

“我非常兴奋,我们发现一种可以使神经网络变得更好的方法,尤其是这种方法能够揭示大脑是如何工作的时候,”Hinton说,洋溢着青春的热情。

这些人工神经网络可以收集信息,并且能够做出反应,它们可以理解东西看起来什么样或听起来像什么。

当你将单词组合起来,它们在做决定的时候会变得更聪明,而在完成这些过程中不需要人类提供物体或对象的标签,这是传统的的机器学习工具做不到的。

随着人工智能的发展,这些神经网络将更加快速、灵活、高效,它们随着机器规模的增加而变得更加聪明,随着时间的推移将能够解决越来越多的复杂任务。

早在80年代初,当Hinton和同事开始这个想法时,那时的电脑性能还远远不能处理神经网络需要的巨大数据集,成功是有限的,随后人工智能社区背弃了他们,转而去寻找类人脑的捷径,而不是尝试模仿大脑的运作。

但仍然有一些研究人员坚定地支持Hinton的工作。

根据Hinton和LeCun回忆,这极为艰难,甚至直到2004年——已经是Hinton和LeCun第一次开发“反向传播”算法神经网络20年之后了——学术界对这些毫无兴趣。

但是那一年,从加拿大先进项目研究所(CIFAR)拿到的极少量资金,并在LeCun以及Bengio的支持下,Hinton建立了神经计算和自适应感知项目,这个项目只邀请一些计算机科学家、生物学家、电气工程师、神经科学家、物理学家和心理学家。

通过招聘这些研究人员,Hinton旨在创建一个世界级的团队,致力于创建模拟生物智能的模拟——模拟大脑如何筛选大量的视觉、听觉以及书面线索来理解和应对它的环境。

Hinton认为建立这样一个组织会刺激人工智能领域的创新,甚至改变世界,事实证明,他是对的。

GeoffreyHinton曾感慨自己的学术生涯就像ANN(人工神经网络)一样起起伏伏,所幸的是,这位Gatsby的创立者一直没有放弃ANN的研究。

他们为实现早期的想法,定期聚集在一起召开研讨会,构建了更强大的深度学习算法,操作更大的数据集。期间赢得全球人工智能比赛,再然后互联网的巨头开始注意到他们。

2011年,一位NCAP研究员和斯坦福的AndrewNg在Google建立了深度学习项目,今天,公司用神经网络在Android手机和社交网络以及Google+上标记图像。

去年,Hinton加入Google公司,其目的是进一步把这项工作做的更为深入。

每年不到一百万美元的CIFAR投资,Hinton和他的伙伴们带来的回报是丰厚的,这不仅发生在Google也发生在一些国家,包括加拿大。

在这个过程中,Hinton和NCAP已经改变了这个曾经抛弃他们社区的面貌,当下大学生从传统机器学习项目转到深度学习这种现象无处不在了。毫无疑问,现在深度学习是主流。

“我们不再是极端分子了”Hinton说,“我们现在可是炙手可热的核心技术呢。”Hinton也周游世界并为深度学习积极布道,Hinton有一个习惯就是喜欢突然大喊:“我现在理解大脑是如何工作的了!

”这很有感染力,他每周都会这样做,你很难模仿。通过NCAP和CIFAR,Hinton开办了一家暑期学校,致力于培养新一代的人工智能研究人员。

有这么多的商业公司进入这一领域,这是比以往任何时候都更加重要。不仅仅是科技巨头加入这个领域,我们也看到大量的深度学习初创公司包括Ersatz,、ExpectLabs以及Declara。

“我们希望把AI和CIFAR带到一个美妙的新领域,”Hinton说,“一个还没有人或者程序到达的境界。

”和GeoffHinton一起共同缔造深度学习复兴的大神还包括YoshuaBengio(如图2)和YannLeCun(图3)教授,他们是Hinton坚定的支持者。

YoshuaBengio(如图2)教授也是机器学习大神之一,他的研究工作主要聚焦在高级机器学习方面,致力于用其解决人工智能问题。

他是少有的几个仍然全身心投入在深度学习学术界的教授之一,好多其他教授早已投身于工业界,加入了Google或Facebook公司。

图2:Montreal大学教授及AI研究者YoshuaBengioYannLeCun和YoshuaBengio不同,他目前就职于Facebook,任Facebook人工智能研究院主任,也是人工智能尤其是深度学习领域最知名的学者之一,在多伦多大学随Hinton读博士后即加盟贝尔实验室,期间研发了卷积神经网络(ConvolutionalNeuralNetworks)与曾广泛用于手写识别和OCR的图变换网络方法。

2003年加入纽约大学,从事广度与深度兼具的各类研究,涉及机器学习、计算机视觉、移动机器人和计算神经学。

图3:纽约大学AI研究者及Facebook人工智能研究院的主任YannLeCun毋庸置疑的是,深度学习以及整个人工智能领域已成为互联网巨头竞争的一个焦点。

深度学习领域人才极度稀缺Montreal大学全职教授YoshuaBengio表示:“深度学习现在炙手可热,目前的困境是缺乏专家,一个博士生大概需要五年的时间培养,但是五年前还没有博士生开始从事深度学习,这意味着现在该领域的专家特别少,可以说弥足珍贵、极度稀缺。

”据说目前深度学习领域的顶尖人才不超过50人,AndrewNg表示深度学习领域人才匮乏的主要原因首先是数据,对于解决某些领域的问题,获取数据并非易事;其次是计算基础架构工具,包括计算机硬件和软件;最后是这个领域的工程师培养时间非常长。

所以科技巨头们包括Google、Facebook、Twitter、百度等纷纷通过收购深度学习领域的初创公司来招揽人才。

Google2013年3月收购了一家名为DNNresearch的初创公司,这家公司隶属多伦多大学计算机科学院,只有三个人——GeoffreyHinton与他的研究生学生AlexKrizhevsky和IlyaSutskever。

之后,Google今年1月份斥资4亿美元收购人工智能初创企业DeepMind,DeepMind由人工智能程序师兼神经科学家DemisHassabis等人联合创立,是前沿的人工智能企业,其将机器学习和系统神经科学的最先进技术结合起来,建立强大的通用学习算法。

另外,Google还收购乌克兰面部识别技术开发商Viewdle。

Google不断的收购深度学习领域的公司最主要的目的是“抢购”一批世界上最一流的专家,在一个迅速成长的人工智能领域里面,这些专家无一不是佼佼者。

Facebook也在2012年以近6000万美元的价格收购以色列人脸识别公司。

人事方面,任命计算机科学家YannLeCun(图3)作为人工智能研究院的主任,用深度学习专业知识来帮助创建解决方案,更好地在每天上传到Facebook上的3.5亿张照片和视频中识别人脸和对象。

去年8月13日Facebook又宣布收购了语音识别及机器翻译公司MobileTechnologies,后者将会帮助我们从图片识别拓展到语音识别领域。

假以时日,Facebook可能会开发出交互更加自然的服务,而且相对于任何现有技术,它还会帮助解决多得多的问题。Twitter今年7月29日收购了基于深度学习的计算机视觉创业公司Madbits。

Madbits这家公司是由Facebook人工智能实验室主任YannLeCun以前两名学生创办的,开发了可自动理解、组织和提取媒介内容信息的视觉智能技术。

这项基于深度学习的计算机视觉技术已经开发完成,正在测试。Twitter上每天都会出现无数的图片。

收购Madbits可以帮助Twitter推出诸如图像搜索的功能,基于图像内容改进搜索排名,甚至是通过分析图像来更好地理解人们的推文内容。其他公司。

雅虎收购深度学习公司LookFlow和图像标注公司IQEngine;QualComm收购图像识别公司Kooaba;Pinterest收购物体识别公司VisualGraph;Dropbox收购图像标注公司AnchoviLabs;百度成立李彦宏亲自挂帅的深度学习研究院,有AndrewNg、余凯等技术大牛加盟;至此,深度学习领域的几位大牛基本上都各有所属。

深度学习的误区及产品化浪潮百度首席科学家AndrewNg表示:“目前围绕DeepLearning存在着某种程度的夸大,它不单出现于媒体的字里行间,也存在于一些研究者之中。这是一种不健康的氛围。

将DeepLearning描绘成对人脑的模拟,这种说法非常具有吸引力,但却是过于简化的模仿,它距离真正的AI或人们所谓的‘奇点’还相当遥远。

”目前这项技术主要是从海量数据当中学习,理解数据,这也是现今有关DeepLearning技术研究和产品发展的驱动力。

而具备与人能力相匹配的AI需要无所不包,例如人类拥有丰富的感情,这些都是当下DeepLearning研究尚未涉及的。

今天,AI领域最大的挑战和短板是Perception,如何让机器更好地理解人的意图;而这正是"深度学习"可以发光发热的范畴。

一项技术能够快速成为主流,一个主要原因就是能够快速推出成熟的产品,深度学习也不例外,所以深度学习产品化是一个大趋势,追求不切实际的“天网”或者电影情节的高科技未免太急功近利、不切实际。

目前"深度学习"让Google产品在语音,文本和图像的识别上变得更加聪明,可以更准确地洞悉我们的信息输入,更人性化地理解我们的意图。

现在,每个安卓手机的语音识别以及Google街景中的图像处理都有"深度学习"的影子。笔者认为,随着深度学习的发展和科技公司加大投入,会有越来越多的产品推向市场。

基于python印刷体汉字识别系统毕业设计是深度学习吗

什么是OCR技术?(专业术语解释)

要谈OCR的发展,早在60、70年代,世界各国就开始有OCR的研究,而研究的初期,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。

以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。

OCR可以说是一种不确定的技术研究,正确率就像是一个无穷趋近函数,知道其趋近值,却只能靠近而无法达到,永远在与100%作拉锯战。

因为其牵扯的因素太多了,书写者的习惯或文件印刷品质、扫描仪的扫瞄品质、识别的方法、学习及测试的样本……等等,多少都会影响其正确率,也因此,OCR的产品除了需有一个强有力的识别核心外,产品的操作使用方便性、所提供的除错功能及方法,亦是决定产品好坏的重要因素。

一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,当然也可节省因键盘输入的人力与时间。

从影像到结果输出,须经过影像输入、影像前处理、文字特征抽取、比对识别、最后经人工校正将认错的文字更正,将结果输出。

在此逐一介绍:影象输入:欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。

科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。

影象前处理:影像前处理是OCR系统中,须解决问题最多的一个模块,从得到一个不是黑就是白的二值化影像,或灰阶、彩色的影像,到独立出一个个的文字影像的过程,都属于影像前处理。

包含了影像正规化、去除噪声、影像矫正等的影像处理,及图文分析、文字行与字分离的文件前处理。

在影像处理方面,在学理及技术方面都已达成熟阶段,因此在市面上或网站上有不少可用的链接库;在文件前处理方面,则凭各家本领了;影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的题纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。

文字特征抽取:单以识别率而言,特征抽取可说是OCR的核心,用什么特征、怎么抽取,直接影响识别的好坏,也所以在OCR研究初期,特征抽取的研究报告特别的多。

而特征可说是识别的筹码,简易的区分可分为两类:一为统计的特征,如文字区域内的黑/白点数比,当文字区分成好几个区域时,这一个个区域黑/白点数比之联合,就成了空间的一个数值向量,在比对时,基本的数学理论就足以应付了。

而另一类特征为结构的特征,如文字影像细线化后,取得字的笔划端点、交叉点之数量及位置,或以笔划段为特征,配合特殊的比对方法,进行比对,市面上的线上手写输入软件的识别方法多以此种结构的方法为主。

对比数据库:当输入文字算完特征后,不管是用统计或结构的特征,都须有一比对数据库或特征数据库来进行比对,数据库的内容应包含所有欲识别的字集文字,根据与输入文字一样的特征抽取方法所得的特征群组。

对比识别:这是可充分发挥数学运算理论的一个模块,根据不同的特征特性,选用不同的数学距离函数,较有名的比对方法有,欧式空间的比对方法、松弛比对法(Relaxation)、动态程序比对法(DynamicProgramming,DP),以及类神经网络的数据库建立及比对、HMM(HiddenMarkovModel)…等著名的方法,为了使识别的结果更稳定,也有所谓的专家系统(ExpertsSystem)被提出,利用各种特征比对方法的相异互补性,使识别出的结果,其信心度特别的高。

字词后处理:由于OCR的识别率并无法达到百分之百,或想加强比对的正确性及信心值,一些除错或甚至帮忙更正的功能,也成为OCR系统中必要的一个模块。

字词后处理就是一例,利用比对后的识别文字与其可能的相似候选字群中,根据前后的识别文字找出最合乎逻辑的词,做更正的功能。字词数据库:为字词后处理所建立的词库。

人工校正:OCR最后的关卡,在此之前,使用者可能只是拿支鼠标,跟着软件设计的节奏操作或仅是观看,而在此有可能须特别花使用者的精神及时间,去更正甚至找寻可能是OCR出错的地方。

一个好的OCR软件,除了有一个稳定的影像处理及识别核心,以降低错误率外,人工校正的操作流程及其功能,亦影响OCR的处理效率,因此,文字影像与识别文字的对照,及其屏幕信息摆放的位置、还有每一识别文字的候选字功能、拒认字的功能、及字词后处理后特意标示出可能有问题的字词,都是为使用者设计尽量少使用键盘的一种功能,当然,不是说系统没显示出的文字就一定正确,就像完全由键盘输入的工作人员也会有出错的时候,这时要重新校正一次或能允许些许的错,就完全看使用单位的需求了。

结果输出:其实输出是件简单的事,但却须看使用者用OCR到底为了什么?

有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和输入文件一模一样,所以有原文重现的功能、有人注重表格内的文字,所以要和Excel等软件结合。

无论怎么变化,都只是输出档案格式的变化而已。

基于深度卷积神经网络进行人脸识别的原理是什么?

本质上是模式识别,把现实的东西抽象成计算机能够理解的数字。如果一个图片是256色的,那么图像的每一个像素点,都是0到255中间的一个值,这样你可以把一个图像转换成一个矩阵。如何去识别这个矩阵中的模式?

用一个相对来讲很小的矩阵在这个大的矩阵中从左到右,从上到下扫一遍,每一个小矩阵区块内,你可以统计0到255每种颜色出现的次数,以此来表达这一个区块的特征。

这样通过这一次“扫描”,你得到了另一个由很多小矩阵区块特征组成的矩阵。这一个矩阵比原始的矩阵要小吧?那就对了!

然后对这个小一点的矩阵,再进行一次上面的步骤,进行一次特征“浓缩”,用另一个意思来讲,就是把它抽象化。最后经过很多次的抽象化,你会将原始的矩阵变成一个1维乘1维的矩阵,这就是一个数字。

而不同的图片,比如一个猫,或者一个狗,一个熊,它们最后得到的这个数字会不同。

于是你把一个猫,一个狗,一个熊都抽象成了一个数字,比如0.34,0.75,0.23,这就达到让计算机来直接辨别的目的了。

人脸,表情,年龄,这些原理都是类似的,只是初始的样本数量会很大,最终都是通过矩阵将具体的图像抽象成了数字,因为计算机只认识数字。但是抽象的函数,会有所不同,达到的效果也会不同。

OCR识别的几种深度学习方法

 

原网站

版权声明
本文为[阳阳2013哈哈]所创,转载请带上原文链接,感谢
https://blog.csdn.net/mynote/article/details/126277521