AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

Overview

AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

AlgoVision

This repository includes the official implementation of our NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations" (Paper @ ArXiv, Video @ Youtube).

algovision is a Python 3.6+ and PyTorch 1.9.0+ based library for making algorithms differentiable. It can be installed via:

pip install algovision

Applications include smoothly integrating algorithms into neural networks for algorithmic supervision, problem-specific optimization within an algorithm, and whatever your imagination allows. As algovision relies on PyTorch it also supports CUDA, etc.

Check out the Documentation!

🌱 Intro

Deriving a loss from a smooth algorithm can be as easy as

from examples import get_bubble_sort
import torch

# Get an array (the first dimension is the batch dimension, which is always required)
array = torch.randn(1, 8, requires_grad=True)

bubble_sort = get_bubble_sort(beta=5)
result, loss = bubble_sort(array)

loss.backward()
print(array)
print(result)
print(array.grad)

Here, the loss is a sorting loss corresponding to the number of swaps in the bubble sort algorithm. But we can also define this algorithm from scratch:

from algovision import (
    Algorithm, Input, Output, Var, VarInt,                                          # core
    Let, LetInt, Print,                                                     # instructions
    Eq, NEq, LT, LEq, GT, GEq, CatProbEq, CosineSimilarity, IsTrue, IsFalse,  # conditions
    If, While, For,                                                   # control_structures
    Min, ArgMin, Max, ArgMax,                                                  # functions
)
import torch

bubble_sort = Algorithm(
    # Define the variables the input corresponds to
    Input('array'),
    # Declare and initialize all differentiable variables 
    Var('a',        torch.tensor(0.)),
    Var('b',        torch.tensor(0.)),
    Var('swapped',  torch.tensor(1.)),
    Var('loss',     torch.tensor(0.)),
    # Declare and initialize a hard integer variable (VarInt) for the control flow.
    # It can be defined in terms of a lambda expression. The required variables
    # are automatically inferred from the signature of the lambda expression.
    VarInt('n', lambda array: array.shape[1] - 1),
    # Start a relaxed While loop:
    While(IsTrue('swapped'),
        # Set `swapped` to 0 / False
        Let('swapped', 0),
        # Start an unrolled For loop. Corresponds to `for i in range(n):`
        For('i', 'n',
            # Set `a` to the `i`th element of `array`
            Let('a', 'array', ['i']),
            # Using an inplace lambda expression, we can include computations 
            # based on variables to obtain the element at position i+1. 
            Let('b', 'array', [lambda i: i+1]),
            # An If-Else statement with the condition a > b
            If(GT('a', 'b'),
               if_true=[
                   # Set the i+1 th element of array to a
                   Let('array', [lambda i: i + 1], 'a'),
                   # Set the i th element of array to b
                   Let('array', ['i'], 'b'),
                   # Set swapped to 1 / True
                   Let('swapped', 1.),
                   # Increment the loss by 1 using a lambda expression
                   Let('loss', lambda loss: loss + 1.),
               ]
           ),
        ),
        # Decrement the hard integer variable n by 1
        LetInt('n', lambda n: n-1),
    ),
    # Define what the algorithm should return
    Output('array'),
    Output('loss'),
    # Set the inverse temperature beta
    beta=5,
)

👾 Full Instruction Set

(click to expand)

The full set of modules is:

from algovision import (
    Algorithm, Input, Output, Var, VarInt,                                          # core
    Let, LetInt, Print,                                                     # instructions
    Eq, NEq, LT, LEq, GT, GEq, CatProbEq, CosineSimilarity, IsTrue, IsFalse,  # conditions
    If, While, For,                                                   # control_structures
    Min, ArgMin, Max, ArgMax,                                                  # functions
)

Algorithm is the main class, Input and Output define arguments and return values, Var defines differentiable variables and VarInt defines non-differentiable integer variables. Eq, LT, etc. are relaxed conditions for If and While, which are respective control structures. For bounded loops of fixed length that are unrolled. Let sets a differentiable variable, LetInt sets a hard integer variable. Note that hard integer variables should only be used if they are independent of the input values, but they may depend on the input shape (e.g., for reducing the number of iterations after each traversal of a For loop). Print prints for debug purposes. Min, ArgMin, Max, and ArgMax return the element-wise min/max/argmin/argmax of a list of tensors (of equal shape).

λ Lambda Expressions

Key to defining an algorithm are lambda expressions (see here for a reference). They allow defining anonymous functions and therefore allow expressing computations in-place. In most cases in algovision, it is possible to write a value in terms of a lambda expressions. The name of the used variable will be inferred from the signature of the expression. For example, lambda x: x**2 will take the variable named x and return the square of it at the location where the expression is written.

Let('z', lambda x, y: x**2 + y) corresponds to the regular line of code z = x**2 + y. This also allows inserting complex external functions including neural networks as part of the lambda expression. Assuming net is a neural networks, one can write Let('y', lambda x: net(x)) (corresponding to y = net(x)).

Let

Let is a very flexible instruction. The following table shows the use cases of it.

AlgoVision Python Description
Let('a', 'x') a = x Variable a is set to the value of variable x.
Let('a', lambda x: x**2) a = x**2 As soon as we compute anything on the right hand side of the equation, we need to write it as a lambda expression.
Let('a', 'array', ['i']) a = array[i] Indexing on the right hand requires an additional list parameter after the second argument.
Let('a', lambda array, i: array[:, i]) a = array[i] Equivalent to the row above: indexing can also be manually done inside of a lambda expression. Note that in this case, the batch dimension has to be written explicitly.
Let('a', 'array', ['i', lambda j: j+1]) a = array[i, j+1] Multiple indices and lambda expressions are also supported.
Let('a', 'array', [None, slice(0, None, 2)]) a = array[:, 0::2] None and slices are also supported.
Let('a', ['i'], 'x') a[i] = x Indexing can also be done on the left hand side of the equation.
Let('a', ['i'], 'x', ['j']) a[i] = x['j'] ...or on both sides.
Let(['a', 'b'], lamba x, y: (x+y, x-y)) a, b = x+y, x-y Multiple return values are supported.

In its most simple form Let obtains two arguments, a string naming the variable where the result is written, and the value that may be expressed via a lambda expression.

If the lambda expression returns multiple values, e.g., because a complex function is called and has two return values, the left argument can be a list of strings. That is, Let(['a', 'b'], lamba x, y: (x+y, x-y)) corresponds to a, b = x+y, x-y.

Let also supports indexing. This is denoted by an additional list argument after the left and/or the right argument. For example, Let('a', 'array', ['i']) corresponds to a = array[i], while Let('array', ['i'], 'b') corresponds to array[i] = b. Let('array', ['i'], 'array', ['j']) corresponding to array[i] = array[j] is also supported.

Note that indexing can also be expressed through lambda expressions. For example, Let('a', 'array', ['i']) is equivalent to Let('a', lambda array, i: array[:, i]). Note how in this case the batch dimension has to be explicitly taken into account ([:, ]). Relaxed indexing on the right-hand side is only supported through lambda expressions due to its complexity. Relaxed indexing on the left-hand side is supported if exactly one probability weight tensor is in the list (e.g., Let('array', [lambda x: get_weights(x)], 'a')).

LetInt only supports setting the variable to an integer (Python int) or list of integers (as well as the same type via lambda expressions). Note that hard integer variables should only be used if they are independent of the input values, but they may depend on the input shape.

If you need help implementing your differentiable algorithm, you may schedule an appointment. This will also help me improve the documentation and usability.

🧪 Experiments

The experiments can be found in the experiments folder. Additional experiments will be added soon.

🔬 Sorting Supervision

The sorting supervision experiment can be run with

python experiments/train_sort.py

or by checking out this Colab notebook.

📖 Citing

If you used our library, please cite it as

@inproceedings{petersen2021learning,
  title={{Learning with Algorithmic Supervision via Continuous Relaxations}},
  author={Petersen, Felix and Borgelt, Christian and Kuehne, Hilde and Deussen, Oliver},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

📜 License

algovision is released under the MIT license. See LICENSE for additional details.

Owner
Felix Petersen
Researcher @ University of Konstanz
Felix Petersen
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022